Math, asked by yuvrajparmar52599, 1 month ago

(1 + cot^2 theta)/(1 + t ^ 2 * theta) = cot^2 theta​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\:\dfrac{1 +  {cot}^{2}\theta }{1 +  {tan}^{2}\theta }

We know

\red{\rm :\longmapsto\:\boxed{\tt{ tan\theta  =  \frac{1}{cot\theta } \: }}}

So, on substituting the value, we get

\rm \:  =  \: \dfrac{1 +  {cot}^{2}\theta }{1 + \dfrac{1}{ {cot}^{2}\theta } }

\rm \:  =  \: \dfrac{1 +  {cot}^{2}\theta }{\dfrac{ {cot}^{2}\theta  +  1}{ {cot}^{2}\theta } }

\rm \:  =  \: \cancel{(1 +  {cot}^{2}\theta)} \times \dfrac{ {cot}^{2}\theta }{\cancel{1 +  {cot}^{2}\theta} }

\rm \:  =  \:  {cot}^{2}\theta

Hence,

\rm \implies\:\boxed{\tt{  \frac{1 +  {cot}^{2}\theta }{1 +  {tan}^{2}\theta }  =  {cot}^{2}\theta  \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions