(1 – Cot 200°)(1 – Cot 25°) =
Answers
Answer:
(1 – Cot 200°)(1 – Cot 25°)
______________________
Step-by-step explanation:
(1 – Cot 200°)(1 – Cot 25°)
\begin{gathered}\frac{( sin200° - cos200°)(sin25° - cos25°)}{ \sin(200°). \sin(25°) } \\ \end{gathered}
sin(200°).sin(25°)
(sin200°−cos200°)(sin25°−cos25°)
\begin{gathered} = > \frac{( \sin200° + \sin110°) ( \sin25° - \sin65°) }{sin200°. \sin25°) } \\ \end{gathered}
=>
sin200°.sin25°)
(sin200°+sin110°)(sin25°−sin65°)
\begin{gathered} = > ({{ \frac{2sin(200 + 110)}{2}. \frac{ \cos(200 - 110) }{2} }})( \frac{2 \cos(25 + 65) }{2} . \frac{ \sin(65 - 25) }{2} ) / \sin(200) \sin(25) \\ \end{gathered}
=>(
2
2sin(200+110)
.
2
cos(200−110)
)(
2
2cos(25+65)
.
2
sin(65−25)
)/sin(200)sin(25)
\begin{gathered} = > \frac{ - 4(sin155°.cos45°)(cos45°.sin20°)}{ \sin(180 + 20).sin25° } \\ \end{gathered}
=>
sin(180+20).sin25°
−4(sin155°.cos45°)(cos45°.sin20°)
\begin{gathered} = > \frac{ - 4 \times (sin45 \times cos45)sin(180 - 25).sin20°}{( - sin20°)(sin25°} \\ \end{gathered}
=>
(−sin20°)(sin25°
−4×(sin45×cos45)sin(180−25).sin20°
\begin{gathered} = > 4 \times \frac{1}{ \sqrt{2} } \times \frac{1}{ \sqrt{2} } . \frac{sin25°.sin20°}{sin20°.sin25°} \\ \end{gathered}
=>4×
2
1
×
2
1
.
sin20°.sin25°
sin25°.sin20°
\begin{gathered} = > 4 \times \frac{1}{2} = 2 \\ \end{gathered}
=>4×
2
1
=2
Therefore , \: \: \pink 2 \: \: \: is \: the \: \: answerTherefore,2istheanswer
______________________