(1 + cot^2Q) tanQ/sec^2 = cotQ
Answers
Answered by
30
Qᴜᴇsᴛɪᴏɴ :-
Prove :- [(1 + cot^2Q) tanQ]/(sec^2) = cotQ
Sᴏʟᴜᴛɪᴏɴ :-
Taking LHS,
→ [(1 + cot^2Q) tanQ]/(sec^2)
using ( 1 + cot²A) = cosec²A in Numerator we get,
→ ( cosec²A * tanA) / (sec²A)
Now, Using :-
- cosecA = (1/sinA)
- tanA = (sinA/cosA)
- secA = (1/cosA)
we get :-
→ [ (1/sin²A) * (sinA/cosA) ] / [ 1 / cos²A ]
→ (1/sinA * cosA) / (1/cos²A)
→ (1/sinA * cosA) * cos²A
→ (cosA/sinA)
→ cotA = RHS . (Proved).
Answered by
4
Question:-
L. H. S
in Numerator, We get.......
(cosec^A*tanA)/(sec^A)
Some useful Formulas:-
☻ cosecA = 1/sinA
☻ tanA = sinA/cosA
☻ SecA = 1/cosA
Now,
(proved) R. H. S
Be brainly ____♛
Similar questions