Math, asked by zuhairalig, 8 months ago

(1 + cot^2Q) tanQ/sec^2 = cotQ

Answers

Answered by RvChaudharY50
30

Qᴜᴇsᴛɪᴏɴ :-

Prove :- [(1 + cot^2Q) tanQ]/(sec^2) = cotQ

Sᴏʟᴜᴛɪᴏɴ :-

Taking LHS,

[(1 + cot^2Q) tanQ]/(sec^2)

using ( 1 + cot²A) = cosec²A in Numerator we get,

→ ( cosec²A * tanA) / (sec²A)

Now, Using :-

  • cosecA = (1/sinA)
  • tanA = (sinA/cosA)
  • secA = (1/cosA)

we get :-

→ [ (1/sin²A) * (sinA/cosA) ] / [ 1 / cos²A ]

→ (1/sinA * cosA) / (1/cos²A)

→ (1/sinA * cosA) * cos²A

→ (cosA/sinA)

cotA = RHS . (Proved).

Answered by Anonymous
4

Question:-

(1+cot^2Q)tanQ/sec^2 = cot Q

\large\mathtt{SOLUTION}

L. H. S

\implies[( 1+cot^2Q)tanQ]/(sec^2)

\implies(1+cot^2A) = cosec^A in Numerator, We get.......

\implies (cosec^A*tanA)/(sec^A)

Some useful Formulas:-

☻ cosecA = 1/sinA

☻ tanA = sinA/cosA

☻ SecA = 1/cosA

Now,

\implies [(1/sin^2 A * ) (sinA/cosA) (1/cos^2A)]

\implies [(1/sinA* cosA) /(1/cos^2A)

\implies( cosA/sinA)

\implies cot A (proved) R. H. S

Be brainly ____♛

Similar questions