Math, asked by jagadishpatil27, 1 year ago

1+ cot^a/1+coseca = 1/sina prove this​

Answers

Answered by chroventer
1

= 1+(cot²A/1+cosecA)

= 1+[(cos²A/sin²A)/(1+1/sinA)]

= 1+[(cos²A/sin²A)/{(sinA+1)/sinA}]

= 1+[cos²A/sin²A×sinA/(sinA+1)]

= 1+[cos²A/sinA(sinA+1)]

= [sinA(1+sinA)+cos²A]/sinA(sinA+1)

= (sinA+sin²A+cos²A)/sinA(sinA+1)

= (sinA+1)/sinA(sinA+1)

= 1/sinA (Proved)


jagadishpatil27: tnx a lot for ur answer
chroventer: You're welcome.
Answered by Anonymous
1

hello

your answer,,,,↓↓↓

1+(cot²A/1+cosecA)

=1+[(cos²A/sin²A)/(1+1/sinA)]

=1+[(cos²A/sin²A)/{(sinA+1)/sinA}]

=1+[cos²A/sin²A×sinA/(sinA+1)]

=1+[cos²A/sinA(sinA+1)]

=[sinA(1+sinA)+cos²A]/sinA(sinA+1)

=(sinA+sin²A+cos²A)/sinA(sinA+1)

=(sinA+1)/sinA(sinA+1)

=1/sinA

regards

:)


Anonymous: Wlcm❤
jagadishpatil27: ☺ ☺
Similar questions