1+ cot^a/1+coseca = 1/sina prove this
Answers
Answered by
1
= 1+(cot²A/1+cosecA)
= 1+[(cos²A/sin²A)/(1+1/sinA)]
= 1+[(cos²A/sin²A)/{(sinA+1)/sinA}]
= 1+[cos²A/sin²A×sinA/(sinA+1)]
= 1+[cos²A/sinA(sinA+1)]
= [sinA(1+sinA)+cos²A]/sinA(sinA+1)
= (sinA+sin²A+cos²A)/sinA(sinA+1)
= (sinA+1)/sinA(sinA+1)
= 1/sinA (Proved)
jagadishpatil27:
tnx a lot for ur answer
Answered by
1
hello
your answer,,,,↓↓↓
1+(cot²A/1+cosecA)
=1+[(cos²A/sin²A)/(1+1/sinA)]
=1+[(cos²A/sin²A)/{(sinA+1)/sinA}]
=1+[cos²A/sin²A×sinA/(sinA+1)]
=1+[cos²A/sinA(sinA+1)]
=[sinA(1+sinA)+cos²A]/sinA(sinA+1)
=(sinA+sin²A+cos²A)/sinA(sinA+1)
=(sinA+1)/sinA(sinA+1)
=1/sinA
regards
:)
Similar questions
Science,
6 months ago
English,
6 months ago
Math,
1 year ago
Political Science,
1 year ago
English,
1 year ago