Math, asked by rajavallirajavalli45, 7 months ago

(1+ Cot A ) ² + (1 - CotA)² = 2 coseca​

Answers

Answered by MaIeficent
36

Step-by-step explanation:

Correct Question:-

\sf   Prove \:  that :-

 \sf {(1 + cotA)}^{2}  +  {(1 - cotA)}^{2}   = 2 {cosec}^{2} A

\bf{\underline{\underline\red{To\:Prove:-}}}

  • \sf {(1 + cotA)}^{2}  +  {(1 - cotA)}^{2} = 2cosecA

\bf{\underline{\underline\green{Proof:-}}}

\sf Identities\: used:-

\sf  {(a + b)}^{2} =  {a}^{2}  +  {b}^{2}  + 2ab

\sf  {(a - b)}^{2} =  {a}^{2}  +  {b}^{2}  - 2ab

Let us prove by simplifying LHS and RHS seperately

\sf  LHS =  {(1 + cotA)}^{2} + {(1 - cotA)}^{2}

\sf   = \big \{   {(1)}^{2} + {(cotA) }^{2} + 2(1)( cotA)  \big\}+   \big \{{(1 )}^{2}  +  (cotA)  ^{2}   -  2(1)(cotA)\big \}

\sf   = \big \{   1+ cot ^{2} A+  2cotA \big\}+   \big \{1+  cot ^{2} A  -  2cotA\big \}

\sf   =   1+ cot ^{2} A+  2cotA +   1+  cot ^{2} A  -  2cotA

\sf   =   1+ cot ^{2} A +   1+  cot ^{2} A   + 2cotA-  2cotA

\sf   =   1+ cot ^{2} A +   1+  cot ^{2} A   \:  \cancel{ + 2cotA} \:  \:  \cancel{-  2cotA }

\sf   =   2+ 2cot ^{2} A

\sf   =   2(1+ cot ^{2} A )

\sf   =   2 \bigg(1+  \dfrac{{cos}^{2} A}{ {sin}^{2} A} \bigg  )   \:  \:  \:  \:\:\:\:\:\:  \:  \bigg ( \because {cot} \theta =  \dfrac{cos \theta}{ {sin}\theta } \bigg)

\sf   =   2 \bigg( \dfrac{{{sin}^{2} A + cos}^{2} A}{ {sin}^{2} A} \bigg  )

\sf   =   2 \bigg( \dfrac{1}{ {sin}^{2} A} \bigg  )  \:  \:  \:  \:  \:  \: \:\:\:\: \: \bigg( \because{sin}^{2} A  + {cos}^{2} A  = 1 \bigg)

\sf   =   2 cosec^{2}A  \:  \:  \:\:\:\:\:\:\:\:\:  \:  \:  \:  \bigg( \because \dfrac{1}{   {sin}^{2} A } = {cosec}^{2} A \bigg)

\sf =   2 cosec^{2}A = RHS

LHS = RHS

Hence Proved

Similar questions