Math, asked by Anonymous, 1 month ago

(1 + cot A - cosec A) (1 + tan A + sec A) = 2
[PROVE IT] ^_^''

Answers

Answered by itzurqueen02
5

Answer:

Refer to the attachment

I hope it helps you ✌️✌️

Attachments:
Answered by CopyThat
14

Answer:

Step-by-step explanation:

We have:

\Rightarrow \bold{(1+cotA-cosecA)(1+tanA+secA)}

We know:

cot A = cos A/sin A

cosec A = 1/sin A

tan A = sin A/cos A

sec A = 1/cos A

Hence:

\Rightarrow \bold{(1+\dfrac{cosA}{sinA}-\dfrac{1}{sinA})(1+\dfrac{sinA}{cosA}+\dfrac{1}{cosA} )  }

\Rightarrow \bold{\dfrac{(sinA+cosA-1)}{sinA}\dfrac{(cosA+sinA+1)}{cosA}  }

\Rightarrow \bold{\dfrac{(sinA+cosA)^2-1}{sinAcosA} }

We know:

(a + b)(a - b) = (a + b)²

(a + b)² = a² + b² + 2ab

Since:

\Rightarrow \bold{\dfrac{sin^2A+cos^2A+2(sinA)(cosA)-1}{sinAcosA} }

We know:

sin²A + cos²A = 1

Hence:

\Rightarrow \bold{\dfrac{1+2sinAcosA-1}{sinAcosA} }

So:

sin A cos A, sin A cos A get cancelled.

+1, -1 get cancelled.

\bold{2}

∴ L.H.S = R.H.S

Similar questions