Math, asked by xiahkmr84, 9 months ago

(1+ cot A-cosecA)(1+tanA+secA)

Answers

Answered by ADITYA98112
2

Answer:

2

Step-by-step explanation:

(1+cotA-cosecA)(1+tanA+secA)

  • on solving them to simplest form
  • by applyin value of cotA cosecA and tanA secA respectively

=(1+cosA/sinA-1/sinA)(1+sinA/cosA+1/cosA)

={(sinA+cosA-1)/sinA} × {(sinA+cosA+1)/cosA}

={(sinA +cosA-1)(sinA+cosA+1)}/sinAcosA

  • by applying formula (a+b)(a-b)=a^2 -b^2
  • by taking sinA+cosA as a and 1 as b in formula by applyingit we get

={(sinA+cosA)^2-(1)^2}/sinAcosA

={sin^2A+cos^2A+2sinAcosA-1}/sinAcosA

sin^2A+cos^2A=1

(1+2sinAcosA-1)/sinAcosA

2sinAcosA/sinAcosA

2 answer

i hope u like solution;)

Answered by sandy1816
0

(1 + cota - coseca)(1 + tana + cota) \\  \\  = ( \frac{sina + cosa - 1}{sina} )( \frac{cosa + sina  + 1}{cosa} ) \\  \\  =  \frac{( {sina + cosa)}^{2} - 1 }{sinacosa}  \\  \\  =  \frac{2sinacosa}{sinacosa}  \\  \\  = 2

Similar questions