1 + cot A + tan a into Sin A minus Cos A is equal to sec a upon cos square A minus Cos A upon sec square A
Answers
Answered by
0
Step-by-step explanation:
1 + cot A + tan a into Sin A minus Cos A is equal to sec a upon cos square A minus Cos A upon sec square A
Attachments:
Answered by
1
Answer:
L.H.S
=(1+ cos A /sinA + sinA/cosA)(sinA-CosA
=(cosAsinA + cos^2A + Sin^2A/cosAsinA )(sinA- cosA). (take LCM)
=(cosA sinA + 1/cosAsinA) (sin A- cos A ).(sin^2A +cos^2 A = 1)
= cosA sin^2A -cos^2 A sin A + sinA - cosA / cos A sin A
=sinA ( 1 - cos^2 A) -cosA (1- sin^2A)/ cosAsinA
sinA sin^2A - cos A cos^2 /cosAsinA
sin^3A - cos^3A/cosAsinA
sin^3A/ sinAcosA - cos^3A/cosA sinA
sin^2A /cosA - cos^2 /sinA
=secA/ cosecA - cosecA / sec^2.
HENCE PROVED
L.H.S = R.H.S
Step-by-step explanation:
thanks..
Similar questions