Math, asked by nemhanghal276, 10 months ago

1+cot alpha + cosec alpha divided by 1-cot alpha +cosec alpha=

Answers

Answered by MaheswariS
2

\underline{\textbf{To prove:}}

\mathsf{\dfrac{1+cot\,\alpha+cosec\,\alpha}{1-cot\,\alpha+cosec\,\alpha}=\dfrac{1+cos\,\alpha}{sin\,\alpha}}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{\dfrac{1+cot\,\alpha+cosec\,\alpha}{1-cot\,\alpha+cosec\,\alpha}}

\textsf{Using the identity,}

\boxed{\bf\,cosec^2\theta-cot^2\theta=1}

\mathsf{=\dfrac{(cosec^2\alpha-cot^2\alpha)+cot\,\alpha+cosec\,\alpha}{1-cot\,\alpha+cosec\,\alpha}}

\textsf{Using the identity,}

\boxed{\bf\,a^2-b^2=(a-b)(a+b)}

\mathsf{=\dfrac{(cosec\,\alpha-cot\,\alpha)(cosec\,\alpha+cot\,\alpha)+cot\,\alpha+cosec\,\alpha}{1-cot\,\alpha+cosec\,\alpha}}

\mathsf{=\dfrac{(cosec\,\alpha+cot\,\alpha)((cosec\,\alpha-cot\,\alpha)+1)}{1-cot\,\alpha+cosec\,\alpha}}

\mathsf{=\dfrac{(cosec\,\alpha+cot\,\alpha)(1-cot\,\alpha+cosec\,\alpha)}{1-cot\,\alpha+cosec\,\alpha}}

\mathsf{=cosec\,\alpha+cot\,\alpha}

\mathsf{=\dfrac{1}{sin\,\alpha}+\dfrac{cos\,\alpha}{sin\,\alpha}}

\mathsf{=\dfrac{1+cos\,\alpha}{sin\,\alpha}}

\implies\boxed{\bf\dfrac{1+cot\,\alpha+cosec\,\alpha}{1-cot\,\alpha+cosec\,\alpha}=\dfrac{1+cos\,\alpha}{sin\,\alpha}}

Similar questions