Math, asked by spshubham399, 2 months ago

[1+cot Φ - cosec Φ] [1+tanΦ+cosΦ]=2​

Answers

Answered by krishnanandan0101
1

Answer:

solve on the basis of given below.

I hope this will help you

Step-by-step explanation:

1+cotA−cosecA)(1+tanA+secA)=2

L.H.S.

=(1+cotA−cosecA)(1+tanA+secA)

=(1+

sinA

cosA

sinA

1

)(1+

cosA

sinA

+

cosA

1

)

=(

sinA

sinA+cosA−1

)(

cosA

cosA+sinA+1

)

=

sinA.cosA

(sinA+cosA)

2

−1

2

=

sinA.cosA

sin

2

A+cos

2

A+2sinA.cosA−1

=

sinA.cosA

1+2sinA.cosA−1

=

sinA.cosA

2sinA.cosA

=2=R.H.S.

Hence, proved.

Answered by ariestheracer
0

Actually the question is wrong. the question will be,

(1+cot θ - cosec θ)(1 + tan θ + sec θ) = 2

Solution:

(1 +   \frac{ \cos\theta }{ \sin \theta }  -  \frac{1}{ \sin\theta } )(1 +  \frac{ \sin \theta }{ \cos \theta}  +  \frac{1}{ \cos\theta } )

 = ( \frac{ \sin\theta  +  \cos \theta - 1 }{ \sin\theta} )(\frac{ \cos\theta  +  \sin\theta - 1 }{ \sin\theta} )

 =  \frac{( \sin \theta +  \cos \theta ) ^{2} - 1 }{ \sin\theta \cos \theta }

 =  \frac{1 + 2 \sin\theta \cos \theta - 1}{ \sin\theta \cos \theta }

(\because \sin^{2}\theta+\cos^{2}\theta=1)

Hence, LHS = RSH

Similar questions