[1+cot Φ - cosec Φ] [1+tanΦ+cosΦ]=2
Answers
Answered by
1
Answer:
solve on the basis of given below.
I hope this will help you
Step-by-step explanation:
1+cotA−cosecA)(1+tanA+secA)=2
L.H.S.
=(1+cotA−cosecA)(1+tanA+secA)
=(1+
sinA
cosA
−
sinA
1
)(1+
cosA
sinA
+
cosA
1
)
=(
sinA
sinA+cosA−1
)(
cosA
cosA+sinA+1
)
=
sinA.cosA
(sinA+cosA)
2
−1
2
=
sinA.cosA
sin
2
A+cos
2
A+2sinA.cosA−1
=
sinA.cosA
1+2sinA.cosA−1
=
sinA.cosA
2sinA.cosA
=2=R.H.S.
Hence, proved.
Answered by
0
Actually the question is wrong. the question will be,
(1+cot θ - cosec θ)(1 + tan θ + sec θ) = 2
Solution:
Hence, LHS = RSH
Similar questions