(1+cot square thita) (1-cos square thita) (1+cos square thita)=?
Answers
Answered by
0
Step-by-step explanation: We are given to simplify the following trigonometric expression :
E=(1-\cos\theta)(1+\cos\theta)(1+\cot^2\theta).E=(1−cosθ)(1+cosθ)(1+cot
2
θ).
We will be using the following formulas :
\begin{lgathered}(i)~1-\cos^2\theta=\sin^2\theta,\\\\(ii)~\cot\theta=\dfrac{\cos\theta}{\sin\theta}\\\\(iii)~(a-b)(a+b)=a^2-b^2.\end{lgathered}
(i) 1−cos
2
θ=sin
2
θ,
(ii) cotθ=
sinθ
cosθ
(iii) (a−b)(a+b)=a
2
−b
2
.
The simplification of the given expression is as follows :
Answered by
1
( 1 + cot² theetha ) ( 1 - cos² theetha ) ( 1 + cos² theetha ) = sin² theetha
hope it helps.....!!!
mark me brainliest.....!!!!!
Attachments:
Similar questions