Math, asked by shravanivaidya64, 8 months ago

(1+cot theta - cosec theta) (1+tan theta + sec theta) prove it . please tell me it's urgent​

Answers

Answered by Saby123
6

To Prove :

(1+cot theta - cosec theta) (1+tan theta + sec theta) = 2

Proof :

The LHS is given as :

(1+cot theta - cosec theta) (1+tan theta + sec theta)

We need to simplify this first .

To do this , first , we need to bring all the terms to the form of sin theta and cos theta.

(1+cot theta - cosec theta) (1+tan theta + sec theta)

=> [ 1 + {cos theta }/{ sin theta } - { 1}/{ sin theta } ][ 1 + {sin theta}/{cos theta} + {1}/{ cos theta } ]

Now , carefully notice the above product .

For (1+cot theta - cosec theta) part , we can take LCM with the denominator as sin theta .

For (1+tan theta + sec theta) part , we can take LCM with the denominator as cos theta .

So ,

=>{ [ sin theta + cos theta - 1 ] [ cos theta + sin theta + 1 ] } / { sin theta cos theta }

Let us assume that sin theta + cos theta = a .

=> { [ a - 1 ][ a + 1 ] } / { sin theta cos theta } ]

=> [ a² - 1 ] / [ sin theta cos theta ]

=> [ ( sin theta + cos theta )² - 1 ] / [ sin theta cos theta ]

=> [ sin ² theta + cos² theta + 2sin theta cos theta - 1 ] / [ sin theta cos theta ]

Now, we know that sin² theta + cos² theta is 1 . So , sin² theta + cos² theta and -1 cancel leaving with :

=> [ 2 sin theta cos theta ] / [ sin theta cos theta ]

=> 2 .

Hence Proved

__________________________

Answered by AngelineSudhagar
2

Step-by-step explanation:

 \large{(1 - cot - cosec)(1 + tan + sec)}

 \large(1 -  \frac{cos}{sin}  -  \frac{1}{sin} ) \: (1 +  \frac{sin}{cos} +  \frac{1}{cos}  )

 \huge \sf \color{cyan} \mathbb{TAKING \:  \:  LCM}

 \large( \frac{sin - cos - 1}{sin})( \frac{cos + sin + 1}{cos} )

  \large\frac{sincos +  {sin}^{2} + sin -  {cos}^{2} - sincos  - cos  - cos - sin - 1}{sin \: cos}

 \large \frac{  {sin}^{2}  -  {cos}^{2}  - 1}{sin \: cos}

hope it helps..

Similar questions