(1+cot theta - cosec theta) (1+tan theta + sec theta) prove it . please tell me it's urgent
Answers
To Prove :
(1+cot theta - cosec theta) (1+tan theta + sec theta) = 2
Proof :
The LHS is given as :
(1+cot theta - cosec theta) (1+tan theta + sec theta)
We need to simplify this first .
To do this , first , we need to bring all the terms to the form of sin theta and cos theta.
(1+cot theta - cosec theta) (1+tan theta + sec theta)
=> [ 1 + {cos theta }/{ sin theta } - { 1}/{ sin theta } ][ 1 + {sin theta}/{cos theta} + {1}/{ cos theta } ]
Now , carefully notice the above product .
For (1+cot theta - cosec theta) part , we can take LCM with the denominator as sin theta .
For (1+tan theta + sec theta) part , we can take LCM with the denominator as cos theta .
So ,
=>{ [ sin theta + cos theta - 1 ] [ cos theta + sin theta + 1 ] } / { sin theta cos theta }
Let us assume that sin theta + cos theta = a .
=> { [ a - 1 ][ a + 1 ] } / { sin theta cos theta } ]
=> [ a² - 1 ] / [ sin theta cos theta ]
=> [ ( sin theta + cos theta )² - 1 ] / [ sin theta cos theta ]
=> [ sin ² theta + cos² theta + 2sin theta cos theta - 1 ] / [ sin theta cos theta ]
Now, we know that sin² theta + cos² theta is 1 . So , sin² theta + cos² theta and -1 cancel leaving with :
=> [ 2 sin theta cos theta ] / [ sin theta cos theta ]
=> 2 .
Hence Proved
__________________________
Step-by-step explanation:
hope it helps..