Math, asked by satmeet2835, 10 months ago

1+cot theta + tan theta into sin theta - cos theta is equal to sec cube theta minus cosec cube theta upon sec square theta into cosec square theta

Answers

Answered by lublana
11

Answer with Step-by-step explanation:

LHS:

(1+cot\theta+tan\theta)(sin\theta-cos\theta)

We know that

tan\theta=\frac{sin\theta}{cos\theta}

cot\theta=\frac{cos\theta}{sin\theta}

(1+\frac{cos\theta}{sin\theta}+\frac{sin\theta}{cos\theta})(sin\theta-cos\theta)

(\frac{sin\theta cos\theta+cos^2\theta+sin^2\theta}{sin\thetacos\theta})(sin\theta-cos\theta)

We know that

sin^3\theta-cos^3\theta=(sin\theta-cos\theta)(sin^2\theta+cos^2\theta+sin\thetacos\theta)

\frac{sin^3\theta-cos^3\theta}{sin\theta cos\theta}

\frac{sin^3\theta}{sin\theta cos\theta}-\frac{cos^3\theta}{sin\theta cos\theta}

\frac{sin^2\theta}{cos\theta}-\frac{cos^2\theta}{sin\theta}

RHS:

\frac{sec^3\theta-cosec^3\theta}{cosec^2\theta sec^2\theta}

\frac{sec\theta}{cosec^2\theta}-\frac{cosec\theta}{sec^2\theta}

\frac{sin^2\theta}{cos\theta}-\frac{cos^2\theta}{sin\theta}

Using the formula

sec\theta=\frac{1}{cos\theta}, cosec\theta=\frac{1}{sin\theta}

LHS=RHS

Hence, proved.

#Learns more:

https://brainly.in/question/15636659:Answered by Nishatalwade

Similar questions