(1+cot theta + tan theta) ( sin theta - cos theta ) / sec^3 theta - cosec ^3 theta = sin^2 theta cos^2 theta
Answers
Answered by
34
Answer:
Step-by-step explanation:
Here we want to prove
(1+cotθ+tanθ)(sinθ-cosθ) / sec³θ-cosec³θ = sin²θcos²θ
L.H.S⇒ {1+cosθ/sinθ+sinθ/cosθ} (sinθ-cosθ) / (1/cos³θ) - (1/sin³θ)
⇒{(sinθcosθ+cos²θ+sin²θ) / sinθcosθ} (sinθ-cosθ) /
(sin³θ-cos³θ)/cos³θsin³θ
⇒{(sinθcosθ+1) / sinθcosθ} (sinθ-cosθ) /
(sinθ- cosθ)(sin²θ+sinθcosθ+cos²θ)/ sinθcosθ.sin²θcos²θ
⇒(sinθcosθ+1)(sinθ-cosθ) / [(sinθ-cosθ)(sinθcosθ+1)/sin²θcos²θ}
⇒sin²θcos²θ ∵a/b÷c/d= ad/bc
⇒R.H.S
Answered by
19
If you like my answer please mark me as brainliest. . .
Attachments:
Similar questions