(1 + cot theta + tan theta ) (sin theta minus cos theta )divide by sec cube minus cosec cube
Answers
Answer:
Solution :
From Left hand side
( 1 + cotФ + tanФ ) ( sinФ - cosФ ) = ( 1 +\dfrac{sin\Theta }{cos\Theta }+\dfrac{cos\Theta }{sin\Theta })(1+
cosΘ
sinΘ
+
sinΘ
cosΘ
) ( sinФ - cosФ )
= \dfrac{sin\Theta cos\Theta+sin^{2}\Theta +cos^{2}\Theta }{sin\Theta cos\Theta }
sinΘcosΘ
sinΘcosΘ+sin
2
Θ+cos
2
Θ
( sinФ - cosФ )
= \dfrac{sin\Theta cos\Theta+1}{sin\Theta cos\Theta }
sinΘcosΘ
sinΘcosΘ+1
( sinФ - cosФ )
= sinФ ( \dfrac{sin\Theta cos\Theta+1}{sin\Theta cos\Theta }
sinΘcosΘ
sinΘcosΘ+1
) - cosФ ( \dfrac{sin\Theta cos\Theta+1}{sin\Theta cos\Theta }
sinΘcosΘ
sinΘcosΘ+1
)
= ( \dfrac{1}{cos\Theta }
cosΘ
1
+ sinФ ) - ( \dfrac{1}{sin\Theta }
sinΘ
1
+ cosФ )
= secФ + sinФ - cosecФ - cosФ .......1
Now,
From Right hand side
\dfrac{sec\Theta }{cosec^{2}\Theta }
cosec
2
Θ
secΘ
- \dfrac{cosec\Theta }{sec^{2}\Theta }
sec
2
Θ
cosecΘ
= \dfrac{\dfrac{1}{cos\Theta }}{\dfrac{1}{sin^{2}\Theta }}
sin
2
Θ
1
cosΘ
1
- \dfrac{\dfrac{1}{sin\Theta }}{\dfrac{1}{cos^{2}\Theta }}
cos
2
Θ
1
sinΘ
1
= \dfrac{sin^{2}\Theta }{cos\Theta }
cosΘ
sin
2
Θ
- \dfrac{cos^{2}\Theta }{sin\Theta }
sinΘ
cos
2
Θ
= \dfrac{sin^{3}\Theta -cos^{3}\Theta }{cos\Theta sin\Theta }
cosΘsinΘ
sin
3
Θ−cos
3
Θ
= \dfrac{(sin\Theta -cos\Theta )(sin^{2}\Theta +cos^{2}\Theta +sin\Theta cos\Theta )}{sin\Theta cos\Theta }
sinΘcosΘ
(sinΘ−cosΘ)(sin
2
Θ+cos
2
Θ+sinΘcosΘ)
= \dfrac{(sin\Theta -cos\Theta )(1 +sin\Theta cos\Theta )}{sin\Theta cos\Theta }
sinΘcosΘ
(sinΘ−cosΘ)(1+sinΘcosΘ)
= \dfrac{1}{cos\Theta }
cosΘ
1
+ sinФ - \dfrac{1}{sin\Theta }
sinΘ
1
+ cosФ
= secФ + sinФ - cosecФ - cosФ .........2
So From 1 and 2
please mark me brianliest