1 + cot theta + tan theta whole whole sin theta minus cos theta whole equal to sec theta by cosec squared theta minus cosec theta by sec squared theta
Answers
Answered by
25
Answer: Hope it helps u..
Hint: In trignometry we can also prove LHS and RHS seperately equal to something and then prove that LHS=RHS.
Attachments:
Answered by
17
(1 + Cotx + Tanx)(Sinx - Cosx) = Secx/Cosec²x - Cosecx/Sec²x
Step-by-step explanation:
(1 + Cotx + Tanx)(Sinx - Cosx) = Secx/Cosec²x - Cosecx/Sec²x
LHS
= (1 + Cotx + Tanx)(Sinx - Cosx)
= (1 + Cosx/Sinx + Sinx/Cosx)(Sinx - Cosx)
= (SinxCosx + Cos²x + Sin²x)(Sinx - Cosx) /(Sinx.Cosx)
=(Sin³x - Cos³x) /(Sinx.Cosx)
= Sin³x/Sinx.Cosx - Cos³x/Sinx.Cosx
= Sin²x/Cosx - Cos²x/Sinx
= Secx/Cosec²x - Cosecx/Sec²x
= RHS
QED
Proved
(1 + Cotx + Tanx)(Sinx - Cosx) = Secx/Cosec²x - Cosecx/Sec²x
Learn more:
1/secx-tanx -1/cos = 1/cosx - 1/secx+tanx
https://brainly.in/question/8160834
cosX-4sinx=1 then sinx+4cosx[tex] cos(x) - Brainly.in
https://brainly.in/question/8892362
Similar questions