Math, asked by ay7417004940, 11 months ago

1 + cot theta upon 1 minus cot theta + 1 - cot theta upon 1 + cot theta equal to 2 sin square theta cos square theta

Answers

Answered by MaheswariS
4

\textbf{To find:}

\dfrac{1+cot\theta}{1-cot\theta}+\dfrac{1-cot\theta}{1+cot\theta}=\dfrac{2}{sin^2\theta-cos^2\theta}

\textbf{Solution:}

\text{Consider,}

\dfrac{1+cot\theta}{1-cot\theta}+\dfrac{1-cot\theta}{1+cot\theta}

=\dfrac{(1+cot\theta)^2+(1-cot\theta)^2}{(1-cot\theta)(1+cot\theta)}

=\dfrac{1+cot^2\theta+2\,cot\theta+1+cot^2\theta-2\,cot\theta}{1-cot^2\theta}

=\dfrac{1+cot^2\theta+1+cot^2\theta}{1-cot^2\theta}

=\dfrac{2+2\,cot^2\theta}{1-cot^2\theta}

=\dfrac{2(1+cot^2\theta)}{1-cot^2\theta}

=\dfrac{2\,cosec^2\theta}{1-\frac{cos^2\theta}{sin^2\theta}}

=\dfrac{2\,cosec^2\theta}{\frac{sin^2\theta-cos^2\theta}{sin^2\theta}}

=\dfrac{2\,cosec^2\theta\,sin^2\theta}{sin^2\theta-cos^2\theta}

=\dfrac{2(\frac{1}{sin^2\theta})sin^2\theta}{sin^2\theta-cos^2\theta}

=\dfrac{2}{sin^2\theta-cos^2\theta}

\textbf{Answer:}

\boxed{\bf\dfrac{1+cot\theta}{1-cot\theta}+\dfrac{1-cot\theta}{1+cot\theta}=\dfrac{2}{sin^2\theta-cos^2\theta}}

Find more:

If cosec theta-sin theta =a^3 and sec theta -cos theta = b^3, prove that a^2b^2 (a² +b²)=1

https://brainly.in/question/15070557

Tan theta = x sin Alfa + y sin Beta / x cos Alfa + y cos Beta, prove that x sin ( theta – Alfa) + y sin ( theta – Beta) = 0

https://brainly.in/question/16834040

1/1+sin theta+ 1/1-sin theta=2sec2 theta

https://brainly.in/question/5186652

Similar questions