Math, asked by eshanchowdhury180405, 4 months ago

1+ cot2a/1+cosec a = cosec a​

Answers

Answered by Anonymous
5

To prove:

 l.h.s =1 + \frac{cot {}^{2} a}{1 + cosec \: a}

 \:  \:  \:  \:  \:  \: \:  \:   \:  \:   = \frac{1 + cosec \: a + cot {}^{2} }{1 + csec \: a}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{1 + cosec \: a + (cosec {}^{2} a - 1)}{1 + cosec \: a}

[cot^2 a=(cosec^2 a-1)]

Now,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \frac{1 + cosec \: a + cosec {}^{2} \: a  - 1}{1 + cosec \: a}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{cosec \: a(1 + cosec \: a)}{(1 + cosec \: a)}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = cosec \: a \:  \: r.h.s \: proved

Hence,Its is proved.


sandhyabobby79: hi
Anonymous: hello
sandhyabobby79: ₲łⱤⱠ ØⱤ ฿ØɎ
Anonymous: girl
sandhyabobby79: Ø₭
Anonymous: n u?
sandhyabobby79: girk
Anonymous: ok
Answered by suprabhat1
0

Answer:

I think this question is like cot²a

LHS = 1 + (Cot²A) / (1+CosecA)

= {1 +CosecA + Cot²A} / ( 1+ CosecA)

On multiplying Numerator & denominator by ( (1- CosecA)

= {( 1+CosecA +Cot²A) ( 1-CosecA)} / (1-Cosec²A)

= (1+CosecA+Cot²A-CosecA -Cosec²A -Cot²A.CosecA) / (1-Cosec²A)

Using fundamental trigonometric identity:

Cot²A+1 = Cosec²A , DENOMINATOR = 1-Cosec²A= -Cot²A

And NUMERATOR = 1+Cot²A-Cosec²A-Cot²A.CosecA

= Cosec²A-Cosec²A - Cot²A.CosecA

= -Cot²A.CosecA

Now, LHS = (-Cot²A.CosecA)/(-Cot²A)

= CosecA= RHS

[Hence Proved]


suprabhat1: bro u made mistake
suprabhat1: in question
Anonymous: sorry,But i think the question is correct
Similar questions