1+ cot²A/1-cosec²A = sec²A(prove that)
Answers
Answer:
sec²A = sec²A
Step-by-step explanation:
Hence proved
Answer:
tan²A + cot²A + 2 = sec²A × cosec²A
tan²A + cot²A = sec²A × cosec²A - 2
LHS = tan²A + cot²A
= (sec²A - 1 ) + (cosec²A - 1)
= sec²A + cosec²A - 2
\begin{gathered}=\frac{1}{{cos}^{2}\alpha} + \frac{1}{{sin}^{2}\alpha} - 2 \\ \\ = \frac{{cos}^{2}\alpha + {sin}^{2}\alpha}{{cos}^{2}\alpha× {sin}^{2}\alpha}- 2 \\ \\ \huge\boxed{{sin}^{2}\theta + {cos}^{2}\theta = 1} \\ \\ = \frac{1}{{cos}^{2}\alpha\: {cosec}^{2}\alpha} -2\\ \\= {sec}^{2}\alpha \:{cosec}^{2}\alpha - 2 \\ \\ \end{gathered}
=
cos
2
α
1
+
sin
2
α
1
−2
=
cos
2
α×sin
2
α
cos
2
α+sin
2
α
−2
sin
2
θ+cos
2
θ=1
=
cos
2
αcosec
2
α
1
−2
=sec
2
αcosec
2
α−2
HENCE PROVED
Step-by-step explanation:
thanks for 50 points and please follow me and mark as brainliest.