Math, asked by garvrastogi, 1 year ago

1 + cot2A/1+cosecA=cosecA

Answers

Answered by Anonymous
4

 to \: prove \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{1 +  {cot \: a}^{2} }{1 + cosec \: a} =  {tan}^{3}

proving  \\ \\  =  >  \frac{1 +   {cos}^{2} a}{1 + cosec \: a}  = cosec \: a \\  \\  taking \: l.h.s. \\ =  >  \frac{ {tan}^{2}a }{1 +  \frac{1}{sin \: a} }  \\  \\  =  >  \frac{ \frac{ {sin}^{2}a }{ {cos}^{2}a } }{ \frac{sin \: a + 1}{sin \: a} }  \\  \\  =  >   \frac{ {sin}^{2} a}{ {cos}^{2} a}  \times  \frac{sin \: a}{1 + sin \: a}  \\  \\  =  >    \frac{sin \: a}{cos \: a} \times \frac{ sin  \: a}{1 -  sin \:  a}  \times  \frac{sin \: a}{1 + sin \: a}  \\  \\  =  >  \frac{sin \: a}{cos \: a}  \times  \frac{ {sin}^{2}a }{1 -  {sin }^{2}a }  \\  \\  =  >  \frac{sin \: a}{cos \: a}  \times  \frac{ {sin}^{2} a}{ {cos}^{2}a }  \\  \\  =  >  \frac{ {sin}^{3}a }{ {cos}^{3} a}  \\  \\  =  >  {tan}^{3} a

hope \: you \: got \: it

Similar questions