(1+cot78)(1+cot57) is equal to
Answers
Answered by
0
Step-by-step explanation:
(1+cot78)(1+cot57)
Now,cot (90−θ)=tanθ
∴cot(78)=tan12
cot(57)=tan33
(1+ tan 12) (1+ tan 33)
=1+tan12+tan33+tan12.tan33 ... (1)
Now,
45 = 12 + 33
tan45=tan(12+33)
1=
1−tan12.tan33
tan12+tan33
∴ 1-tan12.tan33=tan12+tan33
∴1 = tan12.tan33+tan12+tan33
Thus, substituting above result in eq (1)
= 1 + 1
= 2
Similar questions