Math, asked by ishita180806, 8 months ago

(1 + CotA - Cosec) (1+tan A+sec A)= 2 ​

Answers

Answered by Anonymous
3

Solution:

Given:-

\rm\implies ( 1+\cot A-\csc A)(1+\tan A +\sec A)

Using trigonometry identities

\rm \implies \cot A =\dfrac{\cos A}{\sin A}

\rm \implies \tan A=\dfrac{\sin A}{\cos A}

\rm \implies \sec A=\dfrac{1}{\cos A}

\rm \implies \csc A=\dfrac{1}{\sin A}

By applying this identities we get

\rm\implies\bigg(1+\dfrac{\cos A}{\sin A} -\dfrac{1}{\sin A} \bigg)\bigg(1+\dfrac{\sin A}{\cos A} +\dfrac{1}{\cos A} \bigg)

Taking lcm we get

\rm\implies\bigg(\dfrac{\sin A+\cos A-1}{\sin A} \bigg)\bigg(\dfrac{\cos A+\sin A +1}{\cos A} \bigg)

Now multiply

\rm\implies\dfrac{\sin A\cos A+\sin^{2}A+\sin A+\cos^{2} A+\sin A\cos A+\cos A-\cos A-\sin A-1 }{\sin A.\cos A}

\rm\implies\dfrac{\sin A\cos A+1+\sin A\cos A-1 }{\sin A.\cos A}

\rm\implies\dfrac{2\sin A\cos A}{\sin A.\cos A}

\implies 2

Hence proved

Similar questions