(1 +cotA-cosecA) (1 +tanA +secA)= 2
Answers
Answered by
0
Answer
2
Step-by-step explanation:
Step 1: Multiplying each term within brackets we get,
=1+tanA+secA+cotA+cotAtanA+cotAsecA-cosecA-cosecAtanA-cosecAsecA
Step2: Expanding the terms cot, tan,sec,cosec like cos/sin, sin/cos, 1/cos, 1/sin respectively
= 1+ sinA/cosA + 1/cosA +cosA/sinA + (cosA/sinA)(sinA/cosA) + (cosA/sinA)(1/cosA) - 1/sinA - (1/sinA)(sinA/cosA) - (1/sinA)(1/cosA)
Step 3: Cancelling out the like terms we get
= 1+ sinA/cosA + cosA/sinA + 1 - (1/sinA)(1/cosA)
Step 4: Multiply numerator with sin A and cosA respectively to make it equal with the denominator. we get,
= (2sinAcosA + + - 1) / (sinA cosA)
we know the equation
Hence the above equation becomes
= 2sinAcosA /sinAcosA
= 2
Hence solved
Similar questions