{1+cotA-cosecA} {1+tanA+secA}=2
Answers
Answered by
11
Answer:
cosecA=1/sinA
secA=1/cosA
And cotA=(cosA/sinA)
tanA=(sinA/cosA)
So substituting value and taking LCM we get
(sinA+cosA-1)(cosA+sinA+1)/sinAcosA
Now (a+b)(a-b)=a^2-b^2
So
((sinA+cosA)^2–1)/sinAcosA
(sin^2A+2sinAcosA+cos^2A-1)/sinAcosA
Now sin^2A+cos^2A=1 SO….
2sinAcosA/sinAcosA=2
And=2
Hope you get it :)
Answered by
1
Step-by-step explanation:
cosecA=1/sinA
secA=1/cosA
And cotA=(cosA/sinA)
tanA=(sinA/cosA)
So substituting value and taking LCM we get
(sinA+cosA-1)(cosA+sinA+1)/sinAcosA
Now (a+b)(a-b)=a^2-b^2
So
((sinA+cosA)^2–1)/sinAcosA
(sin^2A+2sinAcosA+cos^2A-1)/sinAcosA
Now sin^2A+cos^2A=1 SO….
2sinAcosA/sinAcosA=2
And=2
Similar questions
Social Sciences,
2 months ago
Social Sciences,
5 months ago
History,
5 months ago
English,
10 months ago
Psychology,
10 months ago
English,
10 months ago