Math, asked by dharini234, 2 months ago

(1+cotA-cosecA) (1+tanA+secA) = 2​

Answers

Answered by Anonymous
11

 \large \underline{ \purple{ \sf{question : }}}

 \sf{prove \: that : } \\   \sf{(1 + cotA - cosecA )(1 + tanA + secA) = 1}

 \large \underline{ \blue{ \sf{formulae : }}}

 \sf{tan  \: \theta = \frac{sin \theta}{cos \theta}  } \\  \\  \sf{cot  \:  \theta =  \frac{cos \theta}{sin \theta} } \\  \\ \sf{cosec \theta =  \frac{1}{sin \theta} } \\  \\  \sf{sec \theta =  \frac{1}{cos \theta} }\\  \\    \sf{sin {}^{2}  \theta + cos   {}^{2}  \theta = 1 } \\  \\  \sf{(a - b)(a + b) = a {}^{2} - b {}^{2}  }

  \large \underline{\pink{  \sf{solution :}}}

   \sf{(1 + cotA - cosecA )(1 + tanA + secA) = 1} \\

 \sf{taking \: LHS}

  \sf{= (1 +cot A  - cosecA)(1 + tanA + secA} \\   \\  \sf{= (1 +  \frac{cosA}{sinA}  -  \frac{1}{sinA} })(1 +  \frac{sinA}{cosA }  +  \frac{1}{cosA} ) \\  \\  \sf{ = ( \frac{sinA + cosA - 1}{sinA})( \frac{sinA + cosA + 1}{cosA}  )} \\    \\  \sf{ =  \frac{(sin A + cos A) {}^{2}  - 1 {}^{2}   }{sinA.cosA} } \\  \\  \sf{ =  \frac{sin {}^{2}A + cos {}^{2}A + 2sin A.cos A - 1}{sinA.cosA} } \\  \\  \sf{ =  \frac{1 + 2sinA.cosA - 1}{sinA.cosA} } \\  \\  \sf{=  \frac{ \cancel1 + 2sinA.cosA - \cancel 1}{sinA.cosA}  } \\  \\  \sf{ =  \frac{2sinA.cosA}{sinA.cosA} } \\  \\   \sf{ =  \frac{2 \cancel{sinA.cosA}}{ \cancel{sinA.cosA} }} \\  \\  \sf{ = 2} \\  \\  \sf{ʟʜs = ʀʜs} \\  \\    \underline{\red{\sf{hence \: proved}}}

Similar questions