Math, asked by tinapakhi2300, 1 month ago

( 1+ cotA – cosecA)(1 + tanA + secA) = 2​

Answers

Answered by Anonymous
45

\malteseGiven to prove that:-

(1+cotA-cscA)(1+tanA+secA) = 2

\malteseSolution :-

As we know that,

cotA = \dfrac{cosA}{sinA}

cscA = \dfrac{1}{sinA}

tanA = \dfrac{sinA}{cosA}

secA =\dfrac{1}{cosA}

\malteseSubstituting the values ,

\bigg(1+\dfrac{cosA}{sinA} - \dfrac{1}{sinA} \bigg)\bigg(1+\dfrac{sinA}{cosA} +\dfrac{1}{cosA} \bigg)

\bigg(1+\dfrac{cosA-1}{sinA}\bigg)\bigg(1+\dfrac{sinA+1}{cosA} \bigg)

\malteseTake L.C.M to the denominator

\bigg(\dfrac{sinA+cosA-1}{sinA}\bigg)\bigg(\dfrac{cosA+sinA+1}{cosA} \bigg)

\dfrac{(sinA+cosA+1)(sinA+cosA-1)}{(sinA)(cosA)}

\malteseSimplifying the numerator by applying formula (a-b)(a+b)= a^2-b^2

\dfrac{(sinA+cosA)^2-1}{sinAcosA}

\dfrac{sin^2A+cos^2A+2sinAcosA-1}{sinAcosA}

\dfrac{1+2sinAcosA-1}{sinAcosA}

\dfrac{\not1+2sinAcosA\not{-1}}{sinAcosA}

\dfrac{2sinAcosA}{sinAcosA}

=2

\malteseHence proved!

\malteseUsed formulae:-

  • sin²A + cos² A = 1
  • cotA = cosA/sinA
  • cscA = 1/sinA
  • tanA = sinA/cosA
  • secA = 1/cosA

\maltese Know more formulae :-

Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

csc²θ - cot²θ = 1

Trigonometric relations

sinθ = 1/cscθ

cosθ = 1 /secθ

tanθ = 1/cotθ

tanθ = sinθ/cosθ

cotθ = cosθ/sinθ

Trigonometric ratios

sinθ = opp/hyp

cosθ = adj/hyp

tanθ = opp/adj

cotθ = adj/opp

cscθ = hyp/opp

secθ = hyp/adj

Similar questions