( 1+ cotA – cosecA)(1 + tanA + secA) = 2
Answers
Answered by
45
Given to prove that:-
Solution :-
As we know that,
Substituting the values ,
Take L.C.M to the denominator
Simplifying the numerator by applying formula (a-b)(a+b)= a^2-b^2
Hence proved!
Used formulae:-
- sin²A + cos² A = 1
- cotA = cosA/sinA
- cscA = 1/sinA
- tanA = sinA/cosA
- secA = 1/cosA
Know more formulae :-
Trigonometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
csc²θ - cot²θ = 1
Trigonometric relations
sinθ = 1/cscθ
cosθ = 1 /secθ
tanθ = 1/cotθ
tanθ = sinθ/cosθ
cotθ = cosθ/sinθ
Trigonometric ratios
sinθ = opp/hyp
cosθ = adj/hyp
tanθ = opp/adj
cotθ = adj/opp
cscθ = hyp/opp
secθ = hyp/adj
Similar questions