(1+cotA-cosecA)(1+tanA+secA)=2
Pls prove it...
Answers
Answer:
We have to prove that:
(1+cotA-cosecA)(1+tanA+secA)=2
We know that
cotA= cosA/sinA
cosecA= 1/sinA
tanA= sinA/cosA
secA= 1/cosA
Now,
=(1+cosA/sinA-1/sinA)(1+sinA/cosA+1/cosA)
=(sinA+cosA-1/sinA)(cosA+sinA+1/cosA)
=1/sinAcosA(sinA+cosA-1)(cosA+sinA+1)
=1/sinAcosA[(sinA+cosA)²-1²]
We have an identity:
(a+b)²= a²+b²+2ab
So,
=1/sinAcosA[(sin²A+cos²A+2sinAcosA)-1]
Another identity:
sin²A+cos²A=1
=1/sinAcosA(1+2sinAcosA-1)
=1/sinAcosA(1-1+2sinAcosA)
=1/sinAcosA(2sinAcosA)
=1×2
=2
RHS=LHS
Hence proved.
Answer:
L.H.S=(1+ COTA - COSECA)(1+ TANA+SECA)
=(1 + COSA÷SINA - 1÷SINA)÷(1+SINA÷COSA +1÷COSA)
=(COSA + SINA - 1 )÷ COSA ×( SINA + COSA +1)÷SINA
=[(COS²A + SIN²A)- (1)²]÷COSA×SINA
=(COS²A + 2COSA×SINA + SIN²A - SIN²A - COS²A)÷COSA×SINA
=2SINA×COSA ÷ SINA×COSA
=2
R.H.S = L.H.S