Math, asked by dhruvsheth970, 11 months ago

(1+cotA-cosecA) *(1+tanA+SecA)=2.Prove That R. h. s is equal to l. h. s.​ ​

Answers

Answered by rishu6845
6

Answer:

2

Step-by-step explanation:

To prove---->

-------------

(1+cotA-cosecA) (1+tanA+secA) = 2

proof ---->

---------

LHS=(1+cotA-cosecA) (1+tanA+secA)

we know that

cosA sinA 1

cotA=--------- , tanA=---------- , secA=--------

sinA cosA cosA

1

and cosecA=---------

sinA

putting these values

cosA 1 sinA 1

=(1+---------- - ------------)(1+-------- +----------)

sinA sinA cosA secA

sinA+cosA-1 cosA+sinA+1

=(----------------------------)(--------------------------)

sinA cosA

(sinA+cosA)-1 (sinA+cosA)+1

={-------------------------} {--------------------------}

sinA cosA

we have an identity

a²-b²=(a+b)(a-b) applying it here

(sinA + cosA)² - (1)²

=-----------------------------------------

sinA cosA

we have a identity

(a+b)²=a²+b²+2ab ,applying it here

sin²A + cos²A + 2sinA cosA -1

=---------------------------------------------------

sinA cosA

1 + 2 sinA cos A -1

=--------------------------------------------

sinA cosA

-1 and +1 cancel out each other

2 sinA cosA

= ------------------------------

sinA cosA

SinA and cosA cancel out each other from numerator and denominator

= 2 = RHS

Hope it helps you

Thanks for asking question and giving me to chance to answer it

Answered by Anonymous
0

Answer:

Step-by-step explanation:

(1+cot A-cosec A).(1+tanA+secA)= 2

L.H.S.

=(1+cosA/sinA-1/sinA).(1+sinA/cosA+1/cosA)

=(sinA+cosA-1)×(cosA+sinA+1)/sinA.cosA

=[(sinA+cosA)^2-(1)^2]/sinA.cosA.

=(sin^2A+cos^2A+2.sinA.cosA-1)/sinA.cosA.

=( 1+2.sinA.cosA -1)/sinA.cosA.

= 2.sinA.cosA/sinA.cosA

= 2 , proved.

Similar questions