1+CotA/Sec A=Sin2A/1-Cos A
Answers
Answered by
0
Step-by-step explanation:
Given that,
\frac{1 + sec a}{sec a}
seca
1+seca
= \frac{sin 2a}{1 - cos a}
1−cosa
sin2a
Let, L.H.S
\frac{1 + sec a}{sec a}
seca
1+seca
\frac{1 + (\frac{1}{cos a})}{\frac{1}{cos a}}]
cosa
1
1+(
cosa
1
)
]
\frac{\frac{cos a + 1}{cos a}}{\frac{1}{cos a}}
cosa
1
cosa
cosa+1
cos a + 1cosa+1
Multiple and divide with (1 - cos a)
(1 + cos a)\times \frac{1 - cos a}{1 - cos a}(1+cosa)×
1−cosa
1−cosa
\frac{1 - cos^2 a}{1 - cos a}
1−cosa
1−cos
2
a
\frac{sin 2a}{1 - cos a}
1−cosa
sin2a
R.H.S
Similar questions