Math, asked by rashidkalodi5749, 11 months ago

(1+cotA+tanA)(sinA-cosA)/sec^3A-cosec^3A=sin^2Acos^2A

Answers

Answered by aryagavande
28

I hope the answer is clear enough

Attachments:
Answered by lublana
26

Answer with Step-by-step explanation:

LHS

\frac{(1+cotA+tanA)(sinA-cosA)}{sec^3A-cosec^3A}

\frac{(1+\frac{cosA}{sinA}+\frac{sinA}{cosA})(sinA-cosA)}{\frac{1}{cos^3A}-\frac{1}{sin^3A}}

Using formula

cotA=\frac{cosA}{sinA},tanA=\frac{sinA}{cosA},secA=\frac{1}{cosA},cosecA=\frac{1}{sinA}

\frac{(sinAcosA+cos^2A+sin^2)(sinA-cosA)}{sinAcosA(\frac{sin^3-cos^3}{sin^3Acos^3A})}

\frac{(sin^2A+cos^2A+sinAcosA)(sinA-cosA)}{sinAcosA(\frac{sin^3A-cos^3A}{sin^3Acos^3A})}

\frac{(sinAcosA+cos^2A+sin^2A)(sin^3Acos^3A)(sinA-cosA)}{sinAcosA(sinA-cosA)(sin^2A+cos^2A+sinAcosA)}

By using identity:a^3-b^3=(a-b)(a^2+b^2+ab)}

sin^2Acos^2A

LHS=RHS

Hence, proved .

#Learns more:

https://brainly.in/question/3091233

Similar questions