Math, asked by thakurnaula001, 11 months ago

(1+cotA+tanA)(sinA-cosA)=secA/cosec²A-cosecA/sec²A​

Answers

Answered by Anonymous
16

\huge\boxed{\underline{\mathcal{\red{A}\green{N}\pink{S}\orange{W}\blue{E}\pink{R}}}}

{\bf{\green{LHS= (1+cotA+tanA) } (sinA-cosA)}}}

{\bf{\red{=sinA+sinAcotA+sinAtanA-cosA-cosAcotA-cosAtanA}}}

{\bf{\green{=sinA+sinAcosA/sinA+sinAsinA/cosA-cosA-cosAcosA/sinA-cosAsinA/cosA</p><p>}}}

{\bf{\pink{=sinA+cosA+sin^2A/cosA-cosA-cos^2A/sinA-sinA}}}

{\bf{\green{=sin^2A/cosA-cos^2A/sinA}}}

{\bf{\orange{=sinA(sinA/cosA)cosA(cosA/sinA) -(1)}}}

{\bf{\blue{=1/cosecA(1/cosecA/1/secA)-1/secA(1/secA/1/cosecA)}}}

{\bf{\red{=(1/cosec^2A)(secA)-(1/sec^2)(cosecA)}}}

{\bf{\green{=secA/cosec^2A-cosecA/sec^2A -(2)}}}

from (1)

{\bf{\pink{=sinAtanA-cosAcotA -(3)}}}

from 2 and 3

{\bf{\blue{=RHS}}}

From 3

{\bf{\orange{=sinAsinA/cosA-cosAcosA/sinA}}}

{\bf{\green{=secA/cosec^2A-sec^2A/cosecA}}}

Answered by srikanthn711
3

{\bf{\orange{FOLLOW ME}}}

________________________

Attachments:
Similar questions