Math, asked by hornyboy, 1 year ago

(1+cotx+tanx)(sinx-cosx)bysec^3x-cosec^3x=sin^2xcos^2x

Answers

Answered by Rajalah
18

=(sinx.cosx + 1)/(1+cosx.sinx)×(sinx.cosx)
=sinx.cosx
=R.H.S
Hence,Proved.
I have used the identity.
x {}^{3}  - y {}^{3}  = (x - y)( {x}^{2}  + xy  + y {}^{2} )



Attachments:
Answered by amirgraveiens
5

(1+cotx+tanx)(sinx-cosx)bysec^3x-cosec^3x=sin^2xcos^2x

Proved below.

Step-by-step explanation:

Given:

\frac{(1+cotx+tanx)(sinx-cosx)}{sec^{3}x-cosec^3x} =sec^2xcos^2x

L.H.S=\frac{(1+cotx+tanx)(sinx-cosx)}{sec^{3}x-cosec^3x}

We know that,

cosecx=\frac{1}{x} ; sec x= \frac{1}{cos x}; tan x=\frac{sin x}{cos x}; cot x= \frac{cos x}{sinx}

=\frac{(1+\frac{cosx}{sinx}+\frac{sinx}{cosx})(sinx-cosx)}{\frac{1}{cos^3x}-\frac{1}{sin^3x}}

=[tex]\frac{(\frac{sinxcosx+cos^2x+sin^2x}{(sinxcosx)}) (sinx-cosx)}{\frac{sin^3x-cos^3x}{sin^3xcos^3x} }[/tex]

=\frac{(sinxcosx+cos^2x+sin2x)(sinx-cosx)(sin^2xcos^2x)}{sin^3x-cos^3x}

We know that

a^3 - b^3 = (a - b)(a^2 + b^2+ ab)

Also sin^2x+cos^2x=1

= \frac{(1+sinxcosx)(sin-cosx)(sin^2xcos^2x)}{(sinx-cosx)(sin^2x+cos^2x+sinxcosx)}

=\frac{(1+sinxcosx)(sin-cosx)(sin^2xcos^2x)}{(sinx-cosx)(1+sinxcosx)}

=sin^2xcos^2x

=R.H.S.

Hence proved.

Similar questions