Math, asked by jpjitendra2735, 11 months ago

1 cube + 2 cube + 3 cube + .....+ k cube = 16900, then find 1+2+3+......+k

Answers

Answered by harendrachoubay
15

The value of 1 + 2 + 3 +...... + k = 130

Step-by-step explanation:

We have,

1^{3} +2^{3} +3^{3} +..................+ k^3 = 16900          

To find, the value of 1 + 2 + 3 +...... + k = ?

We know that,

1^{3} +2^{3} +3^{3} +..................+ n^3 = (\dfrac{n(n+1)}{2})^2

and

1 + 2 + 3 +...... + n = \dfrac{n(n+1)}{2}

∴ 1 + 2 + 3 +...... + k = \dfrac{k(k+1)}{2}       ........... (1)

Also, 1^{3} +2^{3} +3^{3} +..................+ k^3 = 16900      

(\dfrac{k(k+1)}{2})^2 = 16900  

(\dfrac{k(k+1)}{2})^2 = 130^2

\dfrac{k(k+1)}{2} = 130

Now, equation (1) can be written as

1 + 2 + 3 +...... + k = 130

∴ The value of 1 + 2 + 3 +...... + k = 130

Similar questions