1.Determine log x base 2401 when X^3 =7
2.2x+4 squared = 1+ square X+9. Find x
3. Expand to the fourth term the expression (x^2- y^2 + 2)^1/2
Answers
Answered by
0
logarithms
![x^3=7\\\\Log_7\ x^3=Log_7\ 7=1\\\\3\ Log_7\ x=1,\ \ Log_7\ x=1/3\\\\let\ y=Log_{2401}\ x\\\\2401^y=x\\\\. [\ (49)^2\ ]^y=x\\\\Log_7\ (49)^{2y}=Log_7\ x\\\\2y\ Log_7\ 49=Log_7\ x\\\\2y\ *\ 2=1/3,\ calculated\ above\\\\y=1/12 x^3=7\\\\Log_7\ x^3=Log_7\ 7=1\\\\3\ Log_7\ x=1,\ \ Log_7\ x=1/3\\\\let\ y=Log_{2401}\ x\\\\2401^y=x\\\\. [\ (49)^2\ ]^y=x\\\\Log_7\ (49)^{2y}=Log_7\ x\\\\2y\ Log_7\ 49=Log_7\ x\\\\2y\ *\ 2=1/3,\ calculated\ above\\\\y=1/12](https://tex.z-dn.net/?f=x%5E3%3D7%5C%5C%5C%5CLog_7%5C+x%5E3%3DLog_7%5C+7%3D1%5C%5C%5C%5C3%5C+Log_7%5C+x%3D1%2C%5C+%5C+Log_7%5C+x%3D1%2F3%5C%5C%5C%5Clet%5C+y%3DLog_%7B2401%7D%5C+x%5C%5C%5C%5C2401%5Ey%3Dx%5C%5C%5C%5C.+%5B%5C+%2849%29%5E2%5C+%5D%5Ey%3Dx%5C%5C%5C%5CLog_7%5C+%2849%29%5E%7B2y%7D%3DLog_7%5C+x%5C%5C%5C%5C2y%5C+Log_7%5C+49%3DLog_7%5C+x%5C%5C%5C%5C2y%5C+%2A%5C+2%3D1%2F3%2C%5C+calculated%5C+above%5C%5C%5C%5Cy%3D1%2F12)
===============
(2x + 4)² = 1 + x² + 9 ???
question is not clear ??
======
3.
√(x² - y² + 2) = ? the taylor series ?
expansion about point (x0, y0) = (0, 0).


===============
(2x + 4)² = 1 + x² + 9 ???
question is not clear ??
======
3.
√(x² - y² + 2) = ? the taylor series ?
expansion about point (x0, y0) = (0, 0).
kvnmurty:
which class is the problem for expansion of the given expression to the power half ?
Answered by
0
Answer:
Step-by-step explanation:
Similar questions