1. एक आयत की लम्बाई, चौड़ाई से 10 मी अधिक है तथा उसका
क्षेत्रफल 200 वर्ग मी है, तो आयत की लम्बाई तथा चौड़ाई
ज्ञात कीजिए।
(1) 20 मी, 10 मी
(2) 15 मी, 25 मी
(3) 10 मी, 15 मी
(4)25 मी, 30 मी
Answers
Answer:
Breadth of rectangle = 10 m
Length of rectangle = 20 m
Step-by-step explanation:
Let,
Breadth of rectangle = x
Length of rectangle = x + 10
Area of rectangle = 200 m²
Area of rectangle = length × breadth
⇒ x (x + 10) = 200
⇒ x² + 10x - 200 = 0
⇒ x² + 20x - 10x - 200 = 0
⇒ x (x + 20) - 10 (x + 20) = 0
⇒ (x + 20) ( x - 10) = 0
⇒ (x + 20) or ( x - 10)
⇒ x + 20 or x - 10
As side can't be negative it is positive
So,
⇒ x = 10
Breadth of rectangle = 10 m
Length of rectangle = x + 10
⇒ 10 + 10
⇒ 20
Length of rectangle = 20 m
Given ,
- The length of rectangle is 10 more than its breadth
- Area of rectangle = 200 m²
Let ,
The breadth of rectangle be " x "
Then , length = " x + 10 "
We know that , the area of rectangle is given by
Thus ,
200 = x(x + 10)
200 = (x)² + 10x
(x)² + 10x - 200 = 0
By middle term splitting method ,
(x)² + 20x - 10x - 200 = 0
x(x + 20) - 10(x + 20) = 0
(x - 10)(x + 20) = 0
x = 10 or x = -20
Since , the length can't be negative
Therefore ,
- Breadth of rectangle = 10 m
- Length of rectangle = 20 m