Math, asked by IpshitaGawande, 2 days ago

(1) Eliminate theta (ii) x=2 cos theta-3sin theta, y=cos theta+ 2 sin theta

Answers

Answered by Laraleorapathi
0

Step-by-step explanation:

Given x=asinθ⟹

a

x

=sinθ

y=acosθ⟹

a

y

=cosθ

As we know that

sin

2

θ+cos

2

θ=1

(

a

x

)

2

+(

a

y

)

2

=1

⟹x

2

+y

2

=a

2

Answered by Anonymous
0

Answer:

Given that,

x = 2 cosθ - 3 sinθ ...(i)

y = cosθ + 2 sinθ

⇒ 2y = 2 cosθ + 4 sinθ ...(ii)

Now, (ii) - (i) ⇒

2y - x = 2 cosθ + 4 sinθ - 2 cosθ + 3 sinθ

⇒ 2y - x = 7 sinθ ...(iii)

Again, (ii) × 7 ⇒

7y = 7 cosθ + 2 (7 sinθ)

⇒ 7y = 7 cosθ + 2 (2y - x), by (iii)

⇒ 7 cosθ = 3y + 2x ...(iv)

Finally, we have

cosθ = \frac{\text{3y+2x}}{7}

7

3y+2x

sinθ = \frac{\text{2y-x}}{7}

7

2y-x

We know that,

sin²θ + cos²θ = 1

\implies {(\frac{2y - x}{7})}^{2} + {(\frac{3y + 2x}{7}})^{2} = 1⟹(

7

2y−x

)

2

+(

7

3y+2x

)

2

=1

\implies \frac{4{y}^{2} - 4xy + {x}^{2}}{49} + \frac{9{y}^{2} + 12xy + 4{x}^{2}}{49} = 1⟹

49

4y

2

−4xy+x

2

+

49

9y

2

+12xy+4x

2

=1

\implies \frac{4{y}^{2} - 4xy + {x}^{2} + 9{y}^{2} + 12xy + 4{x}^{2}}{49}=1⟹

49

4y

2

−4xy+x

2

+9y

2

+12xy+4x

2

=1

⇒ 5x² + 13y² + 8xy = 49,

which is the required equation

Similar questions