Math, asked by aishugowda2515, 5 months ago

1 Evaluate
lim sin2x-tan3x/x
x-0​

Answers

Answered by BrainlyPopularman
12

GIVEN :

• A limit –

  \\ \implies \bf \lim_{x \to0} \bigg\{ \dfrac{ \sin(2x) -  \tan(3x)}{x}\bigg\}\\

TO FIND :

• Value of limit = ?

SOLUTION :

• Let –

  \\ \implies \bf P = \lim_{x \to0} \bigg\{ \dfrac{ \sin(2x) -  \tan(3x)}{x}\bigg\}\\

• Put the limit –

  \\ \implies \bf P =\dfrac{ \sin(2 \times 0) -  \tan(3 \times 0)}{0}\\

  \\ \implies \bf P =\dfrac{ \sin(0) -  \tan(0)}{0}\\

  \\ \implies \bf P =\dfrac{0-0}{0}\\

  \\ \implies \bf P =\dfrac{0}{0}\\

• It's undefined form. Now Let's solve –

  \\ \implies \bf P = \lim_{x \to0} \bigg\{ \dfrac{ \sin(2x)}{x}\bigg\} -\lim_{x \to0} \bigg\{ \dfrac{ \tan(3x)}{x}\bigg\}\\

• We can write this as –

  \\ \implies \bf P =\lim_{x \to0} \bigg\{ \dfrac{ \sin(2x) \times2}{(2x)}\bigg\} -\lim_{x \to0} \bigg\{ \dfrac{ \tan(3x) \times 3}{3x}\bigg\}\\

  \\ \implies \bf P =2\lim_{x \to0} \bigg\{ \dfrac{ \sin(2x)}{(2x)}\bigg\} -3\lim_{x \to0} \bigg\{ \dfrac{ \tan(3x)}{3x}\bigg\}\\

• We also know that –

  \\ \implies \large\bf {\red{ \lim_{x \to0} \bigg\{ \dfrac{ \sin x}{x}\bigg\} = 1 \:  \: , \:  \: \lim_{x \to0} \bigg\{ \dfrac{ \tan x}{x}\bigg\} = 1}}\\

• So that –

  \\ \implies \bf P =2(1) -3(1)\\

  \\ \implies \bf P =2-3\\

  \\ \implies \large{ \boxed{\bf P =-1}}\\

• Hence –

  \\ \implies \large \pink{ \boxed{\bf \lim_{x \to0} \bigg\{ \dfrac{ \sin(2x) -  \tan(3x)}{x}\bigg\} =-1}}\\

Answered by HA7SH
93

Step-by-step explanation:

____________________________________________________________

\text{\huge\underline{\red{Question:-}}}

:\Longrightarrow Evaluate

lim sin2x-tan3x/x

x-0.

\text{\huge\underline{\orange{To\ find:-}}}

:\Longrightarrow ● We have to find the value of limit = ??

\text{\huge\underline{\green{Given:-}}}

:\Longrightarrow ● Limit -

:\Longrightarrow \displaystyle \lim_{x\ to 0}\ \dfrac{sin(2x)-tan(3x)}{x}

\text{\huge\underline{\purple{Solution:-}}}

:\red{\bigstar} \text{\large\underline{\bf{Firstly:-}}}

:\Longrightarrow P = \displaystyle \lim_{x\ to 0}\ \dfrac{sin(2x)-tan(3x)}{x}

:\red{\bigstar} \text{\large\underline{\bf{By\ putting\ the\ limit:-}}}

:\Longrightarrow P =  \mathrm{\dfrac{sin(2×0)-tan(3×0)}{0}}

:\Longrightarrow P =  \mathrm{\dfrac{sin(0)-tan(0)}{0}}

:\Longrightarrow P =  \mathrm{\dfrac{0-0}{0}}

:\Longrightarrow P =  \mathrm{\dfrac{0}{0}}

:\Longrightarrow ● So, it's undefined form.

:\red{\bigstar} \text{\Large\underline{\bf{So\ let's\ solve:-}}}

:\Longrightarrow P = \displaystyle \lim_{x\ to 0}\ \dfrac{sin(2x)}{x}\ -\ \displaystyle \lim_{x\ to 0}\ \dfrac{tan(3x)}{x}

:\red{\bigstar} \text{\Large\underline{\bf{We\ can\ also\ write\ it\ as:-}}}

:\Longrightarrow P = \displaystyle \lim_{x\ to 0}\ \dfrac{sin(2x)×2}{(2x)}- \displaystyle \lim_{x\ to 0}\ \dfrac{tan(3x)×3}{3x}

:\Longrightarrow P = 2\displaystyle \lim_{x\ to 0}\ \dfrac{sin(2x)}{(2x)}\ -3\ \displaystyle \lim_{x\ to 0}\ \dfrac{tan(3x)}{3x}

:\Longrightarrow ● We know that:-

:\Longrightarrow \displaystyle \lim_{x\ to 0}\ \dfrac{sin x}{x}\ =\ 1,\ \displaystyle \lim_{x\ to 0}\ \dfrac{tan x}{x}\ =\ 1

:\Longrightarrow ● So, that :-

:\Longrightarrow P = 2(1) - 3(1)

:\Longrightarrow P = 2 - 3

:\Longrightarrow  \mathrm{P\ =\ -1}

\text{\Large\underline{\pink{Hence:-}}}

:\Longrightarrow \displaystyle \lim_{x\ to 0}\ \dfrac{sin(2x)-tan(3x)}{x}\ =\ -1

\text{\huge\underline{\bf{Hence\ Verified}}}

____________________________________________________________

Similar questions