Math, asked by tamilzhan, 1 year ago


1. Express the following as in the form of (a+b)(a-b)
(1) asquare - 64
(ii) 20asquare - 45b
(iii) 36x?y? - 8
(iv) xsquare - 2xy + ysquare - 2
(v) 49x² - 1​

Answers

Answered by Anonymous
63

AnswEr :

\large\orange{\boxed{ \star \:  \bold{ ( {a}^{2} -  {b}^{2}) = (a + b)(a - b)   }}}

 \blacksquare  \:  \: \bold { {a}^{2} - 64 }

 \implies \tt{ ({a})^{2} - ( {8})^{2}   }

 \blue{ \implies \tt{(a + 8)(a - 8)}}

\rule{100}{2}

 \blacksquare  \:  \: \bold{20 {a}^{2} - 45b }

 \implies \tt{(2 \sqrt{5}a)^{2}  - (3 \sqrt{5b})^{2} }

 \blue{ \implies \tt{(2 \sqrt{5}a + 3 \sqrt{5b})(2 \sqrt{5}a - 3 \sqrt{5b} )   }}

\rule{100}{2}

 \blacksquare  \:  \: \bold{36 {x}^{2} {y}^{2}  - 8 }

 \implies \tt{( {6xy})^{2} -  ({2 \sqrt{2} })^{2}  }

 \blue{ \implies \tt{(6xy + 2 \sqrt{2})(6xy - 2 \sqrt{2} ) }}

\rule{100}{2}

 \blacksquare  \:  \: \bold{ {x}^{2} - 2xy +  {y}^{2} - 2  }

 \implies \tt{ {(x - y)}^{2} -  ({ \sqrt{ 2} })^{2}  }

 \blue{ \implies \tt{(x - y +  \sqrt{2})(x - y -  \sqrt{2})  }}

\rule{100}{2}

 \blacksquare  \:  \: \bold{49 {x}^{2}  - 1}

 \implies \tt{ ({7x})^{2}  -  ({1})^{2} }

 \blue{ \implies \tt{(7x  + 1)(7x - 1)}}

\rule{100}{2}

Answered by mvdiliban2
1

Answer:

(a+b) (a-b)

a) a²-64

= a2- (8)2

= (a - 8) ( a +8)

b)49x²-1

= (7x)2 - (1)2

= (7x - 1) (7x + 1)

Similar questions