Math, asked by sakshamryadav2007, 1 month ago

1 Express the following numbers with the base given in the bracket. (i) 16-3 (base 4) (ii) 8-4 (base 2) ..isiegwuiqhefeui2heuei2qudiei2uh​

Answers

Answered by atharvkadu22
0

Answer:

Given: The Difference of two numbers is 14. & the difference of Square of these two numbers is 448.

Need to find: The numbers?

⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

❍ Let's say, the the numbers be x and y respectively.

Given that,

Difference of these two numbers is 14.

⠀⠀⠀⠀⠀⠀⠀⠀

\begin{gathered}:\implies\sf x - y = 14\qquad\qquad\quad\sf\Bigg\lgroup eq^{n}\;(1)\Bigg\rgroup\\\\\end{gathered}

:⟹x−y=14

eq

n

(1)

Also,

Difference of Square of these numbers is 448.

⠀⠀⠀⠀⠀⠀⠀⠀

\begin{gathered}:\implies\sf x^2 - y^2 = 448\\\\\\\end{gathered}

:⟹x

2

−y

2

=448

\begin{gathered}:\implies\sf (x + y) (x - y) = 448\qquad\qquad\quad\sf\Bigg\lgroup \Big(x^2 - y^2\Big) = \Big(x + y \Big) \Big(x - y \Big)\Bigg\rgroup\\\\\\\end{gathered}

:⟹(x+y)(x−y)=448

(x

2

−y

2

)=(x+y)(x−y)

\begin{gathered}:\implies\sf x + y \times 14 = 448\\\\\\\end{gathered}

:⟹x+y×14=448

\begin{gathered}:\implies\sf x + y = \cancel\dfrac{448}{14}\\\\\\\end{gathered}

:⟹x+y=

14

448

\begin{gathered}:\implies\sf x + y = 32\qquad\qquad\quad\sf\Bigg\lgroup eq^{n}\;(2)\Bigg\rgroup\\\\\\\end{gathered}

:⟹x+y=32

eq

n

(2)

⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

⌑ From eqₙ ( I ) & eqₙ ( II ) :

⠀⠀⠀⠀⠀⠀⠀⠀

\begin{gathered}\longrightarrow\sf x + \cancel{\;y} + x - \cancel{~ y}= 32 + 14\\\\\\\end{gathered}

⟶x+

y

+x−

y

=32+14

\begin{gathered}\longrightarrow\sf 2x = 46\\\\\\\end{gathered}

⟶2x=46

\begin{gathered}\longrightarrow\sf x = \cancel\dfrac{46}{2}\\\\\\\end{gathered}

⟶x=

2

46

\begin{gathered}\longrightarrow{\pmb{\underline{\boxed{\frak{x = 23}}}}}\;\bigstar\\\\\end{gathered}

x=23

x=23

⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

✇ Putting value of x in eqₙ ( II ) :

⠀⠀⠀⠀⠀⠀⠀⠀

\begin{gathered}\longrightarrow\sf x + y = 32\\\\\\\end{gathered}

⟶x+y=32

\begin{gathered}\longrightarrow\sf 23 + y = 32\\\\\\\end{gathered}

⟶23+y=32

\begin{gathered}\longrightarrow\sf y = 32 - 23\\\\\\\end{gathered}

⟶y=32−23

\begin{gathered}\longrightarrow{\pmb{\underline{\boxed{\frak{y = 9}}}}}\;\bigstar\\\\\end{gathered}

y=9

y=9

\therefore{\underline{\textsf{Hence, the numbers are \textbf{23} and \textbf{9} respectively.}}}∴

Hence, the numbers are 23 and 9 respectively.

Answered by madhumitharamcharan
0

Answer:

(i) 4-⁶

(ii) 2-¹²

Step-by-step explanation:

(i)16=4×4

=4²

=(16)-³=(4²)-³

=4-⁶

(ii)8-⁴

8=2×2×2

=2-³

8-⁴=(2³)-⁴

=2-¹²

Similar questions