Math, asked by nainajha1300gmailcom, 7 months ago

1. Factorise:
(vi) 64(a - b)2 - 81(a + b)2​

Answers

Answered by mysticd
0

 Given \: 64(a-b)^{2} - 81(a+b)^{2}

 = [8(a-b)]^{2} - [9(a+b)]^{2}

 = ( 8a - 8b )^{2} - ( 9a - 9b )^{2}

/* By algebraic identity */

 \boxed{\pink{ x^{2} - y^{2} = (x+y)(x-y) }}

 = [ (8a-8b) + ( 9a-9b) ] [ (8a-8b) - ( 9a-9b) ]

 = (8a-8b + 9a-9b) (8a-8b- 9a+ 9b)

 =( 17a - 17b)( -a + b )

 = 17(a-b)(b-a)

Therefore.,

 \red{ Factors \:of \: 64(a-b)^{2} - 81(a+b)^{2} }

\green { = 17(a-b)(b-a) }

•••♪

Similar questions