Math, asked by kingkhatriashish, 1 month ago

1. Find by prime factorization the square root of the following numbers:
(i) 2916 (ii) 2704 (iii) 7056
(iv) 9025​

Answers

Answered by 9904409494
3

Step-by-step explanation:

hope it will helps you

Attachments:
Answered by SachinGupta01
19

 \sf \:  \underline{To \:  find \:  the  \: square  \: root  \: of  \: a \:  perfect \:  square  \: by  \: prime \:  factorization}

 \sf \: \underline{We  \: have \:  to  \: follow \:  the  \: steps \:  given \:  below} :

 \bf{[Step : 1]}

\small\sf{Express \: the \:  given \:  number \:  as \:  a  \: product  \: of  \: prime \:  factors.}

 \bf{[Step : 2] }

\small \sf{Arrange \:  the  \: factors \:  and  \: group \:  them  \: in  \: pairs.}

 \bf [Step : 3]

 \small \sf \: Choose  \: one \:  prime \:  factor  \: from \:  each  \: pair \:  and  \: multiply \:  all  \: such \:  primes.

 \bf [Step : 4]

 \small \sf \: The \:  product \:  is  \: the  \: square \:  root \:  of \:  given  \: number.

______________________________________

Solution : 1

 \sf \: We \:  have \:  to \:  find \:  the  \: prime \:  factor \:  of  \: 2916

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:2916\:\:\:}}}\\ {\underline{\sf{2}}}&{\underline{\sf{\:\:1458\:\:\:}}}\\ {\underline{\sf{3}}}&{\underline{\sf{\:\:729\:\:\:}}}\\ {\underline{\sf{3}}}&{\underline{\sf{\:\:243\:\:\:}}}\\ {\underline{\sf{3}}}&{\underline{\sf{\:\:81\:\:\:}}}\\ {\underline{\sf{3}}}&{\underline{\sf{\:\:27\:\:\:}}}\\ {\underline{\sf{3}}}& \underline{\sf{\:\:9\:\:\:}} \\\underline{\sf{3}}&{\underline{\sf{\:\:3\:\:\:}}} \\ \underline{\sf{}}&{\sf{\:\:1\:\:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

 \sf 2916 =  \underline{2 \times 2} \times  \underline{3 \times 3} \times  \underline{3 \times 3} \times  \underline{3 \times 3}

 \sf  \sqrt{2916}  =   \sqrt{2 \times 2 \times  3 \times 3 \times 3 \times 3 \times 3 \times 3}

 \bold{\therefore } \:  \sf  \sqrt{2916}  =   \sqrt{2  \times  3 \times3 \times 3 }

 \sf  \sqrt{2916}  =   54

 \underline{\red{ \sf \:  Thus, 54  \: is  \: the  \: square  \: root  \: of \:  2916.}}

______________________________________

Solution : 2

 \sf \: We \:  have \:  to \:  find \:  the  \: prime \:  factor \:  of  \: 2704

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:2704\:\:\:}}}\\ {\underline{\sf{2}}}&{\underline{\sf{\:\:1352\:\:\:}}}\\ {\underline{\sf{2}}}&{\underline{\sf{\:\:676\:\:\:}}}\\ {\underline{\sf{2}}}&{\underline{\sf{\:\:338\:\:\:}}}\\ {\underline{\sf{13}}}&{\underline{\sf{\:\:168\:\:\:}}}\\ {\underline{\sf{13}}}&{\underline{\sf{\:\:13\:\:\:}}} \\ \underline{\sf{}}&{\sf{\:\:1\:\:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

 \sf 2704 =  \underline{2 \times 2} \times  \underline{2 \times 2} \times  \underline{13 \times 13}

 \sf  \sqrt{2704}  =   \sqrt{2 \times 2\times  2 \times 2 \times  13 \times 13}

 \sf \bold{ \therefore} \:  \sqrt{2704}  =   \sqrt{2 \times   2   \times 13}

 \sf \sqrt{2704}  = 52

 \underline \green{ \sf \: Thus, 52 \:  is \:  the \:  square \:  root \:  of  \: 2704}

______________________________________

Attachments:
Similar questions