Math, asked by sonisingh79, 3 months ago

1.Find Perimeter and Area of rectangle whose length and breadth is 12 cm end 10 cm

2.There are 20 Boys and 15 Girls in a class. Find the Ratio a) Girls to Boys b) Boys to whole class



give in method and right answer otherwise reported​

Answers

Answered by Clαrissα
5

 \large{ \underline{ \underline{ \red{\tt{Answer \: (1)}}}}}

Given :

  • Length of the rectangle = 12 cm
  • Breadth of the rectangle = 10 cm

To Find :

  • Area and perimeter of the rectangle.

Formulae used :

For calculating the area of rectangle, formula is given by,

 \boxed{ \bf{Area_{(Rectangle)} =l \times b}}

For calculating the perimeter of rectangle, formula is given by,

 \boxed{ \bf{Perimeter_{(Rectangle)} = 2(l + b)}}

Here,

  •  {l} = length
  • b = breadth

Calculations :

 \dag \: { \pink{ \sf{ \underline{ \underline{Calculating  \: the \:  area \:  of \:  rectangle :}}}}}

Using formula,

  \star{\boxed{ \bf{Area_{(Rectangle)} =l \times b}}}

Putting the values,

 \longrightarrow Area of rectangle = length × breadth

 \longrightarrow Area of rectangle = 12 × 10 cm

 \longrightarrow Area of rectangle = 120 cm²

  • Hence, area of rectangle is 120 cm².

 \dag \: { \pink{ \sf{ \underline{ \underline{Calculating  \: the \: perimeter \:  of \:  rectangle :}}}}}

Using formula,

 \star{\boxed{ \bf{Perimeter_{(Rectangle)} = 2(l + b)}}}

Putting the values,

 \longrightarrow Perimeter of rectangle = 2 (l + b)

 \longrightarrow Perimeter of rectangle = 2 (12 + 10)

 \longrightarrow Perimeter of rectangle = 2 × 22

 \longrightarrow Perimeter of rectangle = 44 cm

  • Hence, the perimeter of rectangle is 44 cm.

____________________________________

 \large{ \underline{ \underline{ \red{\tt{Answer \: (2)}}}}}

Given :

  • Number of boys in class = 20 Boys
  • Number of girls in class = 15 girls

To Find :

  1. Ratio of girls to boys
  2. Boys to whole class

Calculations :

 \underline{ \underline{ \bf{ \purple{1) \: Ratio \:  of \:  girls \:  and \:  boys \: - }}}}

Given that,

• Number of girls = 15 girls

• Number of boys = 20 boys

Now, according to the question, let's find the ratio of girls to Boys.

Number of boys : Number of girls

Now, evaluating,

 \longrightarrow 20 : 15

 \longrightarrow 20/15

  • Cancelling the numbers and converting in simplest form,

 \longrightarrow 4/3

  • In ratio,

 \longrightarrow 4 : 3

Therefore, ratio of girls to Boys is 4 : 3.

 \underline{ \underline{ \bf{ \purple{2) \: Ratio \:  of \:  boys \: to \: whole \: class - }}}}

• Total number of students = 35 students

→ 15 + 20

35 students

And, number of boys is 20 Boys.

 \longrightarrow 20 : 35

 \longrightarrow 20/35

  • Cancelling the numbers and converting in simplest form,

 \longrightarrow 4/7

  • In ratio,

 \longrightarrow 4 : 7

Therefore, ratio of boys to whole class is 4 : 7.

Similar questions