Math, asked by sheriffchristian99, 1 month ago

1
Find the amount and the compound interest on 64000 for 1 years at 15%
per annum
compounded half-yearly.​

Answers

Answered by Starwarriorz
3

Answer:

a=p(1+r/100)^t1

Step-by-step explanation:

Compound interest= A-P hope it helped☺️☺️

Answered by SANDHIVA1974
7

{\large{\underline{\underline{\bf{\green{Given : -}}}}}}

⟶ Principle = Rs.64000

⟶ Time = 1½ years

⟶ Rate = 15% per annum componded half yearly.

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{\green{To \: Find : -}}}}}}

⟶ Amount

⟶ Compound Interest

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{\green{ Using \: Formulae: -}}}}}}

⟶ A = P(1 + R/100)ᵀ

⟶ C.I = A - P

\red\bigstar Where

⟶ A = Amount

⟶ P = Principle

⟶ R = Rate

⟶ T = Time

⟶ C.I = Compound Interest

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{\green{Solution : -}}}}}}

\red\bigstar Here, the interest is compounded half yearly and time period is 1½, then :-

{\dashrightarrow{\sf{Time =  1\dfrac{1}{2}}}}

{\dashrightarrow{\sf{Time = \dfrac{(1 \times 2) + 1}{2}}}}

{\dashrightarrow{\sf{Time = \dfrac{ 2 + 1}{2}}}}

{\dashrightarrow{\sf{Time = \dfrac{3}{2}}}}

{\dashrightarrow{\sf{Time =3 \: Half  \: Years}}}

\bigstar{\underline{\boxed{\bf{\blue{Time =3 \: Half  \: Years}}}}}

∴ The time is 3 half years.

\begin{gathered}\end{gathered}

\red\bigstar Let us find out the Amount by Substituting the values in the formula :-

{\dashrightarrow{\sf{Amount =  P\bigg(1 + \dfrac{R}{100} \bigg)^{T}}}}

Substituting the values

{\dashrightarrow{\sf{Amount =  64000 \bigg(1 + \dfrac{15}{2 \times 100} \bigg)^{3}}}}

{\dashrightarrow{\sf{Amount =  64000\bigg(1 + \dfrac{15}{200} \bigg)^{3}}}}

{\dashrightarrow{\sf{Amount =  64000\bigg( \dfrac{(1 \times 200) + 15}{200} \bigg)^{3}}}}

{\dashrightarrow{\sf{Amount =  64000\bigg( \dfrac{200+ 15}{200} \bigg)^{3}}}}

{\dashrightarrow{\sf{Amount =  64000\bigg( \dfrac{215}{200} \bigg)^{3}}}}

{\dashrightarrow{\sf{Amount =  64000\bigg( \cancel{\dfrac{215}{200}} \bigg)^{3}}}}

{\dashrightarrow{\sf{Amount =  64000\bigg({\dfrac{43}{40}} \bigg)^{3}}}}

{\dashrightarrow{\sf{Amount =  64000\bigg({\dfrac{43}{40}} \times \dfrac{43}{40} \times \dfrac{43}{40} \bigg)}}}

{\dashrightarrow{\sf{Amount =  64000\bigg( \dfrac{79507}{64000} \bigg)}}}

{\dashrightarrow{\sf{Amount =  64000 \times \dfrac{79507}{64000}}}}

{\dashrightarrow{\sf{Amount =  \cancel{64000} \times \dfrac{79507}{\cancel{64000}}}}}

{\dashrightarrow{\sf{Amount =Rs.79507}}}

\bigstar{\underline{\boxed{\bf{\purple{Amount =Rs.79507}}}}}

∴ The Amount is Rs.79507.

\begin{gathered}\end{gathered}

\red\bigstar Let us find out the compound interest by substituting the values in the formula :-

{\dashrightarrow{\sf{Compound \: Interest=Amount - Principal}}}

Substituting the values

{\dashrightarrow{\sf{Compound \: Interest=79507 - 64000}}}

{\dashrightarrow{\sf{Compound \: Interest=Rs.15507}}}

\bigstar{\underline{\boxed{\bf{\pink{Compound \: Interest=Rs.15507}}}}}

∴ The compound interest is Rs.15507.

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{\green{Learn \: More : -}}}}}}

\small\circ{\underline{\boxed{\sf{\red{ Simple \: Interest = \dfrac{P \times R \times T}{100}}}}}}

\small\circ{\underline{\boxed{\sf{\red{Amount={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}}

\small\circ{\underline{\boxed{\sf{\red{Amount = Principle + Interest}}}}}

\small\circ{\underline{\boxed{\sf{\red{ Principle=Amount - Interest }}}}}

\small\circ{\underline{\boxed{\sf{\red{Principle = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}}}}}}

\small\circ{\underline{\boxed{\sf{\red{Principle = \dfrac{Interest \times 100 }{Time \times Rate}}}}}}

\small\circ{\underline{\boxed{\sf{\red{Rate = \dfrac{Simple \: Interest \times 100}{Principle \times Time}}}}}}

\begin{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions