Physics, asked by Mysterioushine, 6 months ago

1] Find the Area bounded by the curve y = e⁻ˣ the x - axis and the y - axis.

a) 5

b) 7

c) 3

d) 1

2] The point moves such that it's displacement as a function of time is given by x³ = t³ + 1 . It's acceleration as a function of time t will be

a) \large\sf{\dfrac{2}{x^5}}

b) \large\sf{\dfrac{2t}{x^5}}

c) \large\sf{\dfrac{2t}{x^4}}

d) \large\sf{\dfrac{2t^2}{x^5}}

Answers

Answered by Anonymous
15

\bold\blue{QUESTION \: 1}

Find the Area bounded by the curve y = e⁻ˣ the x - axis and the y - axis.

GIVEN :

\sf y \: = \: e^{-x}

SOLUTION :

When \sf x \: = \: 0, \: then \: y \: = \: e^{-0}

x increases and y decreases and only at \sf x \: = \: \infty, y \: = \: 0

\sf Area \: = \: \sf{\int\limits^o_\infty e^{-x}dx = - [ - e^{-x}]^\infty_0 = 1}

\bold\blue{QUESTION \: 2}

The point moves such that it's displacement as a function of time is given by x³ = t³ + 1 . It's acceleration as a function of time t will be

GIVEN :

\sf x^{3} \: = \: t^{3} \: + \: 1

SOLUTION :

\sf x^{3} \: = \: t^{3} \: + \: 1

=> \sf x \: = \: (t^{3} \: + \: 1)^{1/3}

We know that,

\sf Velocity, \: v \: = \: \dfrac {dx}{dt}

=> \sf \dfrac {d}{dt} \: (t^{3} \: + \: 1)^{1/3}

=> \sf \dfrac {1}{3} \: (t^{3} \: + \: 1)^{-2/3} \times \: 3t^{2}

=> V = t^{2} \times \: (t^{3} \: + \: 1)^{ \frac{ - 2}{3}}

Now,

The acceleration(a) is given that a = \sf \dfrac {dv}{dt}

=> \sf \dfrac {d}{dt} \: (t^{2} \: (t^{3}) \: + \: 1)^{-2/3}

=> \sf 2t \: \times \: (t^{3} \: + \: 1)^{-2/3} \: + \: t^{2} \: \times \: \dfrac {-2}{3} \: (t^{3} \: + \: 1)^{-5/3} \: \times \: 3t^{2}

=> \sf 2tx^{-2} \: - \: 2t^{4} \: x^{-5}

=> \sf 2t \: (x^{-2} \: - \: t^{3} \: \times \: x \: - \: 5)

=> \sf\:2t\:\bigg(\dfrac{1}{x^{2}}\:- {x}^{3} -\dfrac{1}{x^{5}}\bigg)

=> \sf a \: = \: \dfrac {2t}{x^3}

Answered by jaswasri2006
1

1] Option (d) 1

 \\  \\

2] Option

2t² / x³

 \\  \\  \\

Mark as Brainliest answer please my friend

Similar questions