Math, asked by manoj12333, 1 year ago


1. Find the area de a quadrant of a circle whose circumference is 22 cm

Answers

Answered by KDPatak
2

Answer:

Given:

  • circumference of circle is 22cm

To find :

  •    the area of quadrant

Formula:

Area of circle = πr²

Area of quadrant = 1/4 *πr²

Circumference = 2πr

Solving Question:

  To find the area of quadrant ,we need radius ;we have to find the value of 'r' then substitute in the equation.

Solution:

Circumference = 22

2*\dfrac{22}{7} *r = 22

\dfrac{2r}{7}=1\\\\\implies r=\dfrac{7}{2}=3.5

Area\:of\:quadrant=\dfrac{1}{4}\pi r^2\\\\\implies \dfrac{1*22*(3.5)^2}{4*7}\\\\\implies \dfrac{1*22*12.25}{4*7}\\\\\implies \dfrac{269.5}{28}\\\\\implies\boxed{ 9.625cm^2}

Thus, the area of quadrant is 9.625cm²

Answered by Anonymous
21

Given,

  • \sf{Circumference\:of\:the\:circle\:is\:22\:cm}

To find,

  • \sf{Area\:of\:quadrant}

Solution,

It should be noted that a quadrant of a circle is a sector which is making an angle of 90°

  • \sf{Let\:the\:radios\:of\:the\:circle\:be\:r}

  • As,

\large{\sf{C=2πr=22}}

\large\sf{⇒R=\frac{22}{2π}\:cm}

\large\sf{⇒ R=\frac{7}{2}\:cm}

  • So,

\bf{Area\:of\:the\:quadrant,}

\sf{=  \frac{θ}{360°} ×πr^2}

  • Here, θ = 90°

  • So,

\sf\large{A=\frac{90°}{360°}×πr^2\:cm^2}

\sf\large{=\frac{1}{4}×π (\frac{7}{2})^2\:cm^2}

\sf\large{=\frac{1}{4}×π(\frac{49}{4}\:cm^2}

\sf\large{=\frac{49}{16}π\:cm^2}

\sf\large{=\frac{49}{16}×\frac{22}{7}\:cm^2}

\sf\large{=\frac{77}{8}\:cm^2}

\sf\large{=9.6\:\:cm^2}

____________________________

 \large{ \underline{ \overline{ \mid{ \rm{ \red{Answer→9.6\:\:cm^2}} \mid}}}}

____________________________

Similar questions