Math, asked by riya711verma, 5 months ago

1. Find the area of a trapezium shaped plot whose parallel sides are 25 m and 35 m and perpendicular distance
between them is 10 m.

Answers

Answered by bhupendra190980
0

Answer:

Construction:

⇒Draw BE∥AD such that D−E−C

⇒Draw BM⊥DC such that D−E−M−C

□ABED is parallelogram,

⇒AD=BE=13 m

⇒AB=DE=10 m

⇒BC=14 m

⇒DC=DE+EC ....(∵D−E−C)

∴EC=25−10

∴EC=15 m

⇒In ΔBEC

⇒2S=13+14+15

⇒S=21 m

⇒Area of △BEC

⇒A=

s(s−a)(s−b)(s−c)

=

21(21−13)(21−14)(21−15)

=

21×8×7×6

=84 m

2

⇒Area of ΔBCE=

2

1

×BM×EC

⇒BM=

15

84×2

=11.2 cm

⇒Area of □ABED=11.2×10=112 m

2

⇒Area of the field □ABCD

=84+112 m

2

=196 m

2

solution

Answered by xXitzSweetMelodyXx
5

Step-by-step explanation:

Construction:

⇒Draw BE∥AD such that D−E−C

⇒Draw BM⊥DC such that D−E−M−C

□ABED is parallelogram,

⇒AD=BE=13 m

⇒AB=DE=10 m

⇒BC=14 m

⇒DC=DE+EC ....(∵D−E−C)

∴EC=25−10

∴EC=15 m

⇒In ΔBEC

⇒2S=13+14+15

⇒S=21 m

⇒Area of △BEC

⇒a =  \sqrt{s(s - a)(s - b )(s - c) }

⇒ \sqrt{21(21 - 13)(21 - 14)(21 - 15}

⇒ \sqrt{21 \times 8  \times 7 \times 6}

=84m²

⇒area \: of \: Δabce \:  \frac{1}{2} \times bm \times ec

⇒bm =  \frac{84 \times 2}{15}

=11.2cm

⇒Area of □ ABED =11.2×10m²

⇒Area of the field □ABCD

=84+112 m²

=196m²

xXitzSweetMelodyXx

Similar questions