1. Find the area of a triangle having sides of length 15 cm, 28 cm and 4lom
Also find the length of cel altitude drown from opposite Wester to
the side of length 28 cm
Answers
Step-by-step explanation:
Perimeter of triangle is 40 (cm). Area of triangle is 60(cm^{2})(cm
2
) . Altitude on side 17 cm is 7.059 (cm).
Step-by-step explanation:
1. Side of triangle is 8 cm, 15 cm and 17 cm.
So
Perimeter of triangle = Sum of side of triangle
Perimeter of triangle= 8+15+ 17=40 (cm)
2. If we see side of triangle
8^{2}+15^{2}=17^{2}8
2
+15
2
=17
2
64+225=17^{2}64+225=17
2
289=17^{2}289=17
2
17^{2}=17^{2}17
2
=17
2
Means it satisfied Pythagoras rule
It must be a right angle triangle, and right angle opposite to side longest side 17 (cm).
3. Base =15 cm
Perpendicular= 8 cm
Hypotenuse =17 cm
4. So area of triangle =\frac{1}{2}\times base\times perpendicular=\frac{1}{2}\times 15\times 8=60(cm^{2})=
2
1
×base×perpendicular=
2
1
×15×8=60(cm
2
)
5.
Area of triangle=\frac{1}{2}\times base\times Perpendicular=\frac{1}{2}\times Hypotenuse\times altitude=
2
1
×base×Perpendicular=
2
1
×Hypotenuse×altitude
We can also write
\frac{1}{2}\times Hypotenuse\times altitude=
2
1
×Hypotenuse×altitude= Area of triangle
\frac{1}{2}\times 17\times altitude= 60
2
1
×17×altitude=60
On solving
Altitude =7.059 (cm)
Answer:
Here,
a=5,b=12,c=13
s=
2
1
(a+b+c)=15
Area of the triangle, A =
s(s−a)(s−b)(s−c)
A=
15(15−5)(15−12)(15−13)
A=30 cm
2
Let p be the length of perpendicular. Then,
A=
2
1
×13×p
Therefore,
2
1
×13×p=30
p=
13
60
cm