Math, asked by kajolh414, 19 days ago

1. Find the area of a triangle whose sides are 7 cm, 9 cm and 8 cm. ​

Answers

Answered by niteshrajputs995
1
  • As per the data given in the question, we have to find the value of the expression.

               Given data:- Sides of the triangle is  7cm,\ 9cm,\ 8cm.

               To find:- Area of a triangle.

               Solution:-

  • The area of a triangle is the region enclosed between the sides of the triangle.

        Let's  

       The Triangle be 'ABC'.  

        Then, AB → a, BC → b, CA → c  

        From the given information

            \begin{array}{l}A B \rightarrow a=7 \mathrm{~cm} \\ B C \rightarrow b=9 \mathrm{~cm} \\ C A \rightarrow C=8 \mathrm{~cm}\end{array}

       By Using "Heron's Formula".

        \begin{array}{l}\text { Area of Triangle }=\sqrt{s(s-a)(s-b)(s-c)} \\\\                    \end{array}

                          s=\frac{a+b+c}{2}\\s=\frac{7+9+8}{2}\\s=12cm.

        Now,

           \begin{array}{l}\sqrt{12(12-7)(12-9)(12-8)} \\\rightarrow \sqrt{12(5)(3)(4)}\\\begin{array}{l}\rightarrow \sqrt{12 \times} 60} \\\rightarrow \sqrt{720} \\\rightarrow 26.832\end{array}\end{array}

     Hence we will get  are of a triangle is 26.832cm^{2} .

Answered by shahegulafroz
0

Answer:

The area of triangle is 26.832 cm^{2}

Step-by-step explanation:

Given data:- Sides of the triangle is 7 cm, 9 cm, 8 cm

To find- Area of triangle

Solution -

     Area of triangle =\sqrt{s(s-a)(s-b)(s-c)}

a= 7 cm\\b=9cm\\c= 8cm

Area of triangle = \sqrt{s(s-7)(s-9)(s-8)}

s = \frac{a+b+c}{2} \\s=  \frac{7+9+8}{2} \\s= \frac{24}{2} \\s = 12cm

Area of triangle= \sqrt{12(12-7)(12-9)(12-8)}

Area of triangle=\sqrt{12(5)(3)(4)}

Area of triangle=\sqrt{720}

Area of triangle= 26.832 cm^{2}

The area of triangle is 26.832 cm^{2}

Similar questions