Math, asked by ayushraj1422003, 11 months ago

1. Find the area of a triangle whose sides are in the ratio 5:12:13 and its perimeter is 60
cm.​

Answers

Answered by sachinarora2001
89

Given -

_____________________✨✨

Sides of traingle in ratio

5:12:13

Perimeter => 60cm

______________✨✨

Concept -

Find the Area of traingle.?????

______________✨✨

Formula used

 \sqrt{s(s - a)(s - b)(s - c)}

______________✨✨

Solution.-

Let ,

a =  > 5x \\  \\ b =  > 12x \\  \\ c =  > 13x \\  \\ perimeter =  > 60cm

5x + 12x + 13x = 60 \\  \\ 30x =  > 60 \\  \\ x =  >  \frac{60}{30} cm \\  \\ x =  > 2cm

 \color{red}{put \: the \: value \: of \: x \: } \\  \\ 5 \times 2 = 10cm \\  \\ 12 \times 2 = 24cm \\  \\ 13 \times 2 =  > 26cm \\  \\  \color{blue} \boxed{s =  \frac{a + b + c}{2} } \\  \\ s =  >  \frac{10 + 24 + 26}{2}  \\  \\ s =  >  \frac{60}{2}  \\  \\  \color{hotpink} \boxed{s =  > 30cm}

By Heron s formula.....

 \sqrt{s(s - a)(s - b)(s - c)}  \\  \\  \sqrt{30(30 - 10)(30 - 24)(30 - 26)} \\  \\  \sqrt{30(20)(6)(4)}   \\  \\  \sqrt{30 \times 20 \times 6 \times 4 }  \\  \\  \sqrt{5 \times 6\times 5 \times 4 \times 6 \times 1 \times 4}  \\  \\  =  >  >  5 \times 6 \times 4 \\  \\  =  >  > 120c {m}^{2}

Area of Traingle = 120cm²

_____________

Hope it's helps you ☺️

____________________

Thanks☺️

Answered by αmαn4чσu
134

\underline{\huge{\underline{\bold{\purple{Question}}}}}

Find the area of a triangle whose sides are in the ratio 5:12:13 and its perimeter is 60

cm.

\underline{\huge{\underline{\bold{\purple{Answer}}}}}

Given :-

  • \bold{a\;=\;5x}
  • \bold{b\;=\;12x}
  • \bold{c\;=\;13x}
  • \bold{Perimeter\;=60cm}

To find :-

The area of a triangle.

Steps of Solution

First we have to find all the sides.

  • Formula to find all the sides = a + b + c = perimeter.

\bold{5\;x\;+\;12\;x\;+\;13\;x\;=\;60}

\bold{17\;x\;+\;13\;x\;=\;60}

\bold{30\;x\;=\;60}

x \:  =  \:  \frac{60}{30} \\ x  \:  =  \: 2cm

\bold{Therefore\;=\;a=\;5\;x\;=\;5\;x\;2\;=\;10cm}

\bold{ \ b=\;12\;x\;=\;12\;x\;2\;=\;24cm}

\bold{ \ c\;=\;13\;x\;=\;12\;x\;2\;=\;26cm}

 \bold s = {\frac{a+b+c}{2}}

 \bold s = {\frac{10+24+26}{2}}

 \bold s = {\frac{34+26}{2}}

 \bold s = {\frac{60}{2}}

 \bold s = {30}

  • By Herons Formula

\bold{=\sqrt{s(s - a)(s - b)(s - c)}}\\ \\ = \sqrt{30(30 - 10)(30 - 24)(30 - 26)} \\ \\= \sqrt{30(20)(6)(4)} \\ \\= \sqrt{30 \times 20 \times 6 \times 4 } \\ \\= \sqrt{5 \times 6\times 5 \times 4 \times 6 \times 1 \times 4} \\ \\ =  5 \times 6 \times 4 \\ \\ =  120c {m}^{2}

Similar questions