Math, asked by adityagtm2006, 5 months ago


1. Find the area of a triangle whose sides are respectively 150 cm, 120 cm and 200

Answers

Answered by Anonymous
9

CORRECT QUESTION :

  • Find the area of a triangle whose sides are 150 cm, 120 cm and 200 cm respectively.

GIVEN :

  • The sides of a triangle are 150 cm, 120 cm, 200 cm.

TO FIND :

  • The area of a triangle = ?

FORMULA USED :

  • Heron's formula :- \sf \sqrt {s(s-a)(s-b)(s-c)}

SOLUTION :

To find the area of a triangle,

By using heron's formula,

Area of a triangle :- \sf \sqrt {s(s-a)(s-b)(s-c)}

\sf S \ = \ \dfrac {150+120+200}{2}

\sf S \ = \ 235 \ cm

\large \sf \sqrt {s(s-a)(s-b)(s-c)}

\implies \sf \sqrt {235 (235-150)(235-120)(235-200)}

\implies \sf \sqrt {235 \times 85 \times 115 \times 35}

\implies \sf \sqrt {80399375}

\implies \sf Area \ = \ 8966.57 \ cm^{2}

\therefore The area of a triangle is 8966.57 cm².

Answered by vipashyana1
1

a=200cm, b=150cm, c=120cm</p><p> \\ s =  \frac{a + b + c}{2}  =  \frac{200 + 150 + 120}{2}  =  \frac{470}{2}  = 235cm \\ </p><p>Area  \: of  \: triangle   \\    = \sqrt{s(s - a)(s - b)(s -c )}  \\  =  \sqrt{235(235 - 200)(200 - 150)(235 - 120)}  \\  =  \sqrt{235 \times 35 \times 50 \times 115}   \\  =  \sqrt{47293750} \\  = 25\sqrt{75670}   \\  = 6877.04 {cm}^{2}

Similar questions